
Automated Benchmarking

Benchmarking is a key step to fuel progress in an empirically driven field such as machine
learning.
For hyperparameter optimization (HPO), benchmarking is particularly hard:

● most benchmarks are expensive, which renders extensive HPO computationally infeasible

● useful datasets are often scarce

We present Profet, a generative meta-model that allows to sample new HPO tasks. Thereby,
tasks are returned in a parametric form and, hence, cheap-to-evaluate, which allows for
exhaustive HPO benchmarking.

We collected data for 3 typical HPO problem classes:
● support vector machine on OpenML classification datasets (D=2)
● Fully connected neural network on OpenML classification datasets (D=6)
● XGBoost on UCI regression datasets (D=8)

The plot on the right shows the computation time to perform 20 runs with
different methods on real HPO tasks vs on surrogate tasks.

For each problem class we trained our meta-model and generated 1000 tasks. To showcase our
benchmarking toolkit we evaluate various state-of-the-art Bayesian optimization methods, random search and
two evolutionary algorithms. To aggregate performance across all tasks we report:

● empirical cumulative distribution (ecdf) of the runtime a optimizer requires to achieve a certain value
● average ranking scores

The plots below show the results exemplarily for the meta-svm tasks without noise

Let ,... be a set of related tasks with the same input domain sampled from
some distribution
Let us denote by the performance of an optimization method on task .
To draw statistically more significant conclusions, we would ideally like to integrate over all
tasks:

Unfortunately, the above integral is intractable as is unknown.
Profet approximates with a generative meta-model based on some off-line
generated data . This enables us to sample an arbitrary
amount of tasks in order to perform a Monte-Carlo approximation:

Approach

Evaluating the Meta-Model

Meta-Surrogate Benchmarking for Hyperparameter Optimization
Aaron Klein*1, Zhenwen Dai2, Frank Hutter3, Neil Lawrence4, Javier Gonzalez1

1Amazon, 2Spotify, 3University of Freiburg, 4University of Cambridge
*corresponding author: kleiaaro@amazon.com

Dataset and code available at: https://github.com/amzn/emukit

In a nutshell

Left: Representation (mean and 4 standard deviation) of task pairs (same
color) generated by partitioning 11 datasets from the fully connected network
benchmark (see below).

Meta-Model
Our Meta-Model for consists of two components:
- A probabilistic encoder based on GPLVM to model the correlation across tasks
- A multi task model:

based on a Bayesian neural networks. We assume to be Gaussian

To generate new tasks in a parametric form from our meta model:
1. Sample a new latent task vector
2. Randomly samples a set of weight from our Bayesian neural network
3. Set the function
4. Optionally we can emulate the observation noise by

Right: Visualizing the concept of Profet:
Left: 9 different tasks coming from the
same distribution. Middle: latent space
for the task embedding. Right: new
tasks generated by our meta-model

 Left: p-values of pairwise comparisons between different HPO
methods based on (left) 1000 real tasks, (right) results with 1000
tasks generated from our meta-model. Small p-values should be
interpreted as finding evidence that the method in the column
outperforms the method in the row.

