
Automated Benchmarking

Benchmarking is a key step to fuel progress in an empirically driven field such as machine 
learning.
For hyperparameter optimization (HPO), benchmarking is particularly hard:

● most benchmarks are expensive, which renders extensive HPO computationally infeasible

● useful datasets are often scarce

We present Profet, a generative meta-model that allows to sample new HPO tasks. Thereby, 
tasks are returned in a parametric form and, hence, cheap-to-evaluate, which allows for 
exhaustive HPO benchmarking.

We collected data for 3 typical HPO problem classes:
● support vector machine on OpenML classification datasets (D=2)
● Fully connected neural network on OpenML classification datasets (D=6)
● XGBoost on UCI regression datasets (D=8)

The plot on the right shows the computation time to perform 20 runs with 
different methods on real HPO tasks vs on surrogate tasks.

For each problem class we trained our meta-model and generated 1000 tasks. To showcase our 
benchmarking toolkit we evaluate various state-of-the-art Bayesian optimization methods, random search and 
two evolutionary algorithms. To aggregate performance across all tasks we report:

● empirical cumulative distribution (ecdf) of the runtime a optimizer requires to achieve a certain value
● average ranking scores 

The plots below show the results exemplarily for the meta-svm tasks without noise

Let               ,...      be a set of related tasks with the same input domain     sampled from 
some distribution    
Let us denote by           the performance of an optimization method     on task   .
To draw statistically more significant conclusions, we would ideally like to integrate over all 
tasks:
 

Unfortunately, the above integral is intractable as          is unknown.
Profet approximates          with a generative meta-model            based on some off-line 
generated data                               . This enables us to sample                 an arbitrary 
amount of tasks in order to perform a Monte-Carlo approximation:
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In a nutshell

Left: Representation (mean and 4 standard deviation) of task pairs (same 
color) generated by partitioning 11 datasets from the fully connected network 
benchmark (see below). 

Meta-Model
Our Meta-Model for            consists of two components:
- A probabilistic encoder             based on GPLVM to model the correlation across tasks
- A multi task model:                                                       

based on a Bayesian neural networks. We assume                                       to be Gaussian

To generate new tasks                in a parametric form from our meta model: 
1. Sample a new latent task vector 
2. Randomly samples a set of weight                 from our Bayesian neural network
3. Set the function 
4. Optionally we can emulate the observation noise by 

Right:  Visualizing the concept of Profet: 
Left: 9 different tasks coming from the 
same distribution. Middle: latent space 
for the task embedding. Right: new 
tasks generated by our meta-model

 Left: p-values of pairwise comparisons between different HPO 
methods based on (left) 1000 real tasks, (right) results with 1000 
tasks generated from our meta-model. Small p-values should be 
interpreted as finding evidence that the method in the column 
outperforms the method in the row.

 

 


