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Abstract. Many different machine learning algorithms exist; taking into
account each algorithm’s hyperparameters, there is a staggeringly large
number of possible alternatives overall. We consider the problem of si-
multaneously selecting a learning algorithm and setting its hyperparam-
eters. We show that this problem can be addressed by a fully automated
approach, leveraging recent innovations in Bayesian optimization. Specif-
ically, we consider feature selection techniques and all machine learning
approaches implemented in WEKA’s standard distribution, spanning 2
ensemble methods, 10 meta-methods, 28 base learners, and hyperparam-
eter settings for each learner. On each of 21 popular datasets from the
UCI repository, the KDD Cup 09, variants of the MNIST dataset and
CIFAR-10, we show performance often much better than using standard
selection and hyperparameter optimization methods. We hope that our
approach will help non-expert users to more effectively identify machine
learning algorithms and hyperparameter settings appropriate to their
applications, and hence to achieve improved performance.

1 Introduction

Increasingly, users of machine learning tools are non-experts who require off-the-
shelf solutions. The machine learning community has much aided such users by
making available a wide variety of sophisticated learning algorithms and feature
selection methods through open source packages, such as WEKA [15] and mlr [7].
Such packages ask a user to make two kinds of choices: selecting a learning
algorithm and customizing it by setting hyperparameters (which also control
feature selection, if applicable). It can be challenging to make the right choice
when faced with these degrees of freedom, leaving many users to select algorithms
based on reputation or intuitive appeal, and/or to leave hyperparameters set to
default values. Of course, adopting this approach can yield performance far worse
than that of the best method and hyperparameter settings.

This suggests a natural challenge for machine learning: given a dataset, au-
tomatically and simultaneously choosing a learning algorithm and setting its
hyperparameters to optimize empirical performance. We dub this the combined
algorithm selection and hyperparameter optimization (CASH) problem; we for-
mally define it in Section [3] There has been considerable past work separately



addressing model selection, e.g. [IIGISIOITTI23I24I3T] ], and hyperparameter opti-
mization, e.g. [BIABITA2729/22] |. In contrast, despite its practical importance,
we are surprised to find only limited variants of the CASH problem in the lit-
erature; furthermore, these consider a fixed and relatively small number of pa-
rameter configurations for each algorithm, see e.g. [21] ].

A likely explanation is that it is very challenging to search the combined
space of learning algorithms and their hyperparameters: the response function
is noisy and the space is high dimensional, involves both categorical and contin-
uous choices, and contains hierarchical dependencies (e.g., the hyperparameters
of a learning algorithm are only meaningful if that algorithm is chosen; the al-
gorithm choices in an ensemble method are only meaningful if that ensemble
method is chosen; etc). Another related line of work is on meta-learning pro-
cedures that exploit characteristics of the dataset, such as the performance of
so-called landmarking algorithms, to predict which algorithm or hyperparame-
ter configuration will perform well [2[21125/30]. While the CASH algorithms we
study in this chapter start from scratch for each new dataset, these meta-learning
procedures exploit information from previous datasets, which may not always be
available.

In what follows, we demonstrate that CASH can be viewed as a single hier-
archical hyperparameter optimization problem, in which even the choice of algo-
rithm itself is considered a hyperparameter. We also show that—based on this
problem formulation—recent Bayesian optimization methods can obtain high
quality results in reasonable time and with minimal human effort. After dis-
cussing some preliminaries (Section7 we define the CASH problem and discuss
methods for tackling it (Section . We then define a concrete CASH problem
encompassing a wide range of learners and feature selectors in the open source
package WEKA (Section , and show that a search in the combined space of
algorithms and hyperparameters yields better-performing models than standard
algorithm selection and hyperparameter optimization methods (Section. More
specifically, we show that the recent Bayesian optimization procedures TPE [4]
and SMAC [I6] often find combinations of algorithms and hyperparameters that
outperform existing baseline methods, especially on large datasets.

2 Preliminaries

We consider learning a function f : X +— ), where ) is either finite (for clas-
sification), or continuous (for regression). A learning algorithm A maps a set
{d1,...,dn} of training data points d; = (x;,¥;) € X x Y to such a function,
which is often expressed via a vector of model parameters. Most learning al-
gorithms A further expose hyperparameters A € A, which change the way the
learning algorithm Ay itself works. For example, hyperparameters are used to
describe a description-length penalty, the number of neurons in a hidden layer,
the number of data points that a leaf in a decision tree must contain to be eligible
for splitting, etc. These hyperparameters are typically optimized in an “outer



loop” that evaluates the performance of each hyperparameter configuration using
cross-validation.

2.1 Model Selection

Given a set of learning algorithms A and a limited amount of training data
D = {(x1,y1)s---,(Xn,yn)}, the goal of model selection is to determine the
algorithm A* € A with optimal generalization performance. Generalization per-
formance is estimated by splitting D into disjoint training and validation sets
D). and DY)

train valid’ and evaluat-

learning functions f; by applying A* to DY)

train?
ing the predictive performance of these functions on Dya)h q- This allows for the
model selection problem to be written as:

k
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Aca k=

) is the loss achieved by A when trained on D and

train
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evaluated on D_ ..

We use k-fold cross-validation [19], which splits the training data into k equal-
sized partitions D\(,gid, ... ,Df}gid, and sets D,Egin =D\ D\(;)hd fori=1,..., k

2.2 Hyperparameter Optimization

The problem of optimizing the hyperparameters A € A of a given learning
algorithm A is conceptually similar to that of model selection. Some key dif-
ferences are that hyperparameters are often continuous, that hyperparameter
spaces are often high dimensional, and that we can exploit correlation structure
between different hyperparameter settings A1, Ao € A. Given n hyperparameters
A1, -y Ay With domains Ay, ..., A,, the hyperparameter space A is a subset of
the crossproduct of these domains: A C Ay x - - - x A,. This subset is often strict,
such as when certain settings of one hyperparameter render other hyperparame-
ters inactive. For example, the parameters determining the specifics of the third
layer of a deep belief network are not relevant if the network depth is set to
one or two. Likewise, the parameters of a support vector machine’s polynomial
kernel are not relevant if we use a different kernel instead.

More formally, following [I7], we say that a hyperparameter \; is conditional
on another hyperparameter \;, if A\; is only active if hyperparameter A; takes
values from a given set V;(j) € Aj; in this case we call \; a parent of ;.
Conditional hyperparameters can in turn be parents of other conditional hyper-
parameters, giving rise to a tree-structured space [4] or, in some cases, a directed

! There are other ways of estimating generalization performance; e.g., we also exper-
imented with repeated random subsampling validation [I9], and obtained similar
results.



Algorithm 1 SMBO

initialise model Mp; H « 0
while time budget for optimization has not been exhausted do
A + candidate configuration from My,
Compute ¢ = L(Ax, Di);,, DY)
H+— HU{(N )}
Update M, given ‘H
end while
return A from H with minimal ¢

acyclic graph (DAG) [I7]. Given such a structured space A, the (hierarchical)
hyperparameter optimization problem can be written as:

k
1 (%) (7)
A* € argmin — L(Ax; Dirains Puatia)-
AgeA k ; ( ’ ia)

3 Combined Algorithm Selection and Hyperparameter
Optimization (CASH)

Given a set of algorithms A = {AM ... A} with associated hyperparameter
spaces AWM.  A®) we define the combined algorithm selection and hyperpa-
rameter optimization problem (CASH) as computing

k
. 1 @) p@  pl)
A A € argoiin EZE(Af 7Dtrain’Dvalid)' (1)

A e A XEAG) i—1

We note that this problem can be reformulated as a single combined hi-
erarchical hyperparameter optimization problem with parameter space A =
AV Y...uA® Yy {A\r}, where A, is a new root-level hyperparameter that selects
between algorithms A ... A®). The root-level parameters of each subspace
A® are made conditional on ), being instantiated to A;.

In principle, problem [I|can be tackled in various ways. A promising approach
is Bayesian Optimization [I0], and in particular Sequential Model-Based Opti-
mization (SMBO) [16], a versatile stochastic optimization framework that can
work with both categorical and continuous hyperparameters, and that can ex-
ploit hierarchical structure stemming from conditional parameters. SMBO (out-
lined in Algorithm [1)) first builds a model M that captures the dependence of
loss function £ on hyperparameter settings A (line 1 in Algorithm . It then
iterates the following steps: use M, to determine a promising candidate config-
uration of hyperparameters A to evaluate next (line 3); evaluate the loss ¢ of A
(line 4); and update the model M, with the new data point (X, ¢) thus obtained
(lines 5-6).

In order to select its next hyperparameter configuration A using model M,
SMBO uses a so-called acquisition function aprq,. : A — R, which uses the pre-
dictive distribution of model M at arbitrary hyperparameter configurations



A € A to quantify (in closed form) how useful knowledge about A would be.
SMBO then simply maximizes this function over A to select the most useful
configuration A to evaluate next. Several well-studied acquisition functions ex-
ist [I826128]; all aim to automatically trade off exploitation (locally optimizing
hyperparameters in regions known to perform well) versus exploration (trying
hyperparameters in a relatively unexplored region of the space) in order to avoid
premature convergence. In this work, we maximized positive expected improve-
ment (EI) attainable over an existing given loss ¢,in [26]. Let ¢(X) denote the
loss of hyperparameter configuration A. Then, the positive improvement function
OVEr Cmin 1S defined as

I

Cmin

(A) := max{cmin — ¢(N),0}.

Of course, we do not know ¢(A). We can, however, compute its expectation with
respect to the current model M :

EML [Icmm ()‘)] = / maX{Cmin —C, O} “PM,, (C | /\) de. (2)

—00

We briefly review the SMBO approach used in this chapter.

3.1 Sequential Model-based Algorithm Configuration (SMAC)

Sequential model-based algorithm configuration (SMAC) [16] supports a variety
of models p(c | A) to capture the dependence of the loss function ¢ on hyper-
parameters A, including approximate Gaussian processes and random forests. In
this chapter we use random forest models, since they tend to perform well with
discrete and high-dimensional input data. SMAC handles conditional parameters
by instantiating inactive conditional parameters in A to default values for model
training and prediction. This allows the individual decision trees to include splits
of the kind “is hyperparameter \; active?”, allowing them to focus on active
hyperparameters. While random forests are not usually treated as probabilistic
models, SMAC obtains a predictive mean ux and variance ox? of p(c | A) as
frequentist estimates over the predictions of its individual trees for A; it then
models pa, (¢ | A) as a Gaussian N (ux, ox?).

SMAC uses the expected improvement criterion defined in Equation [2] in-
stantiating ¢, to the loss of the best hyperparameter configuration measured
so far. Under SMAC’s predictive distribution pa, (¢ | X) = N(ux, ox?), this
expectation is the closed-form expression

Enmeepin(N)] = 0x - [u- (u) + ¢(u)],

where u = %, and ¢ and @ denote the probability density function and cu-
mulative distribution function of a standard normal distribution, respectively [I§].

SMAC is designed for robust optimization under noisy function evaluations,
and as such implements special mechanisms to keep track of its best known con-
figuration and assure high confidence in its estimate of that configuration’s per-
formance. This robustness against noisy function evaluations can be exploited in



combined algorithm selection and hyperparameter optimization, since the func-
tion to be optimized in Equation is a mean over a set of loss terms (each

rain a0d Df,gh q constructed from the training set).
A key idea in SMAC is to make progressively better estimates of this mean by
evaluating these terms one at a time, thus trading off accuracy and computa-
tional cost. In order for a new configuration to become a new incumbent, it must
outperform the previous incumbent in every comparison made: considering only
one fold, two folds, and so on up to the total number of folds previously used to
evaluate the incumbent. Furthermore, every time the incumbent survives such
a comparison, it is evaluated on a new fold, up to the total number available,
meaning that the number of folds used to evaluate the incumbent grows over
time. A poorly performing configuration can thus be discarded after considering
just a single fold.

Finally, SMAC also implements a diversification mechanism to achieve ro-
bust performance even when its model is misled, and to explore new parts of the
space: every second configuration is selected at random. Because of the evalua-
tion procedure just described, this requires less overhead than one might imagine.

corresponding to one pair of D)

4 Auto-WEKA

To demonstrate the feasibility of an automatic approach to solving the CASH
problem, we built Auto-WEKA, which solves this problem for the learners and
feature selectors implemented in the WEKA machine learning package [15]. Note
that while we have focused on classification algorithms in WEKA| there is no
obstacle to extending our approach to other settings. Indeed, another successful
system that uses the same underlying technology is auto-sklearn [12].

Table [1] shows all supported learning algorithms and feature selectors with
the number of hyperparameters. algorithms. Meta-methods take a single base
classifier and its parameters as an input, and the ensemble methods can take
any number of base learners as input. We allowed the meta-methods to use
any base learner with any hyperparameter settings, and allowed the ensemble
methods to use up to five learners, again with any hyperparameter settings.
Not all learners are applicable on all datasets (e.g., due to a classifier’s inability
to handle missing data). For a given dataset, our Auto-WEKA implementation
automatically only considers the subset of applicable learners. Feature selection
is run as a preprocessing phase before building any model.

The algorithms in Table[[|have a wide variety of hyperparameters, which take
values from continuous intervals, from ranges of integers, and from other discrete
sets. We associated either a uniform or log uniform prior with each numerical
parameter, depending on its semantics. For example, we set a log uniform prior
for the ridge regression penalty, and a uniform prior for the maximum depth for
a tree in a random forest. Auto-WEKA works with continuous hyperparame-
ter values directly up to the precision of the machine. We emphasize that this
combined hyperparameter space is much larger than a simple union of the base
learners’ hyperparameter spaces, since the ensemble methods allow up to 5 in-



Base Learners

BayesNet 2 NaiveBayes 2
DecisionStump* 0 NaiveBayesMultinomial 0
DecisionTable* 4 OneR 1
GaussianProcesses™ 10 PART 4
IBk* 5 RandomForest 7
J48 9 RandomTree* 11
JRip 4 REPTree* 6
KStar* 3 SGD* 5
LinearRegression* 3 SimpleLinearRegression* 0
LMT 9 SimpleLogistic 5
Logistic 1 SMO 11
M5P 4 SMOreg* 13
Mb5Rules 4 VotedPerceptron 3
MultilayerPerceptron* 8 ZeroR* 0
Ensemble Methods
Stacking 2 Vote 2
Meta-Methods
LWL 5 Bagging 4
AdaBoostM1 6 .
AdditiveRegression 4 RandomCommittee
AttributeSelectedClassifier 2 RandomSubSpace 3
Feature Selection Methods
BestFirst 2 GreedyStepwise 4

Fig. 1. Learners and methods supported by Auto-WEKA, along with number of hy-
perparameters |A|. Every learner supports classification; starred learners also support
regression.

dependent base learners. The meta- and ensemble methods as well as the feature
selection contribute further to the total size of AutoWEKA’s hyperparameter
space.

Auto-WEKA uses the SMAC optimizer described above to solve the CASH
problem and is available to the public through the WEKA package manager;
the source code can be found at https://github.com/automl/autoweka and
the official project website is at http://www.cs.ubc.ca/labs/beta/Projects/
autowekal For the experiments described in this chapter, we used Auto-WEKA
version 0.5. The results the more recent versions achieve are similar; we did not
replicate the full set of experiments because of the large computational cost.

5 Experimental evaluation

We evaluated Auto-WEKA on 21 prominent benchmark datasets (see Table [1)):
15 sets from the UCI repository [13]; the ‘convex’, ‘MNIST basic’ and ‘rotated
MNIST with background images’ tasks used in [5]; the appentency task from the
KDD Cup ’09; and two versions of the CIFAR-10 image classification task [20]
(CIFAR-10-Small is a subset of CIFAR-10, where only the first 10000 training
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Table 1. Datasets used; Num. Discr.. and Num. Cont. refer to the number of discrete
and continuous attributes of elements in the dataset, respectively.

Num Num Num Num Num

Name Discr. Cont. Classes Training Test
Dexter 20000 0 2 420 180
GermanCredit 13 7 2 700 300
Dorothea 100000 O 2 805 345
Yeast 0 8 10 1038 446
Amazon 10000 0 49 1050 450
Secom 0 591 2 1096 471
Semeion 256 0 10 1115 478
Car 6 0 4 1209 519
Madelon 500 0 2 1820 780
KR-vs-KP 37 0 2 2237 959
Abalone 1 7 28 2923 1254
Wine Quality 0 11 11 3425 1469
Waveform 0 40 3 3500 1500
Gisette 5000 0 2 4900 2100
Convex 0 784 2 8000 50000
CIFAR-10-Small 3072 0 10 10000 10000
MNIST Basic 0 784 10 12000 50000
Rot. MNIST + BI 0 784 10 12000 50000
Shuttle 9 0 7 43500 14500
KDDO09-Appentency 190 40 2 35000 15000
CIFAR-10 3072 0 10 50000 10000

data points are used rather than the full 50000.) Note that in the experimen-
tal evaluation, we focus on classification. For datasets with a predefined train-
ing/test split, we used that split. Otherwise, we randomly split the dataset into
70% training and 30% test data. We withheld the test data from all optimization
method; it was only used once in an offline analysis stage to evaluate the models
found by the various optimization methods.

For each dataset, we ran Auto-WEKA with each hyperparameter optimiza-
tion algorithm with a total time budget of 30 hours. For each method, we per-
formed 25 runs of this process with different random seeds and then—in order
to simulate parallelization on a typical workstation—used bootstrap sampling to
repeatedly select four random runs and report the performance of the one with
best cross-validation performance.

In early experiments, we observed a few cases in which Auto-WEKA’s SMBO
method picked hyperparameters that had excellent training performance, but
turned out to generalize poorly. To enable Auto-WEKA to detect such over-
fitting, we partitioned its training set into two subsets: 70% for use inside the



SMBO method, and 30% of validation data that we only used after the SMBO
method finished.

5.1 Baseline Methods

Auto-WEKA aims to aid non-expert users of machine learning techniques. A
natural approach that such a user might take is to perform 10-fold cross valida-
tion on the training set for each technique with unmodified hyperparameters, and
select the classifier with the smallest average misclassification error across folds.
We will refer to this method applied to our set of WEKA learners as Ex-Def; it
is the best choice that can be made for WEKA with default hyperparameters.

For each dataset, the second and third columns in Table |2 present the best
and worst “oracle performance” of the default learners when prepared given all
the training data and evaluated on the test set. We observe that the gap between
the best and worst learner was huge, e.g. misclassification rates of 4.93% vs
99.24% on the Dorothea dataset. This suggests that some form of algorithm
selection is essential for achieving good performance.



Table 2. Performance on both 10-fold cross-validation and test data. Ex-Def and Grid Search are deterministic. Random search had a time
budget of 120 CPU hours. For Auto-WEKA, we performed 25 runs of 30 hours each. We report results as mean loss across 100 000 boot-
strap samples simulating 4 parallel runs. We determined test loss (misclassification rate) by training the selected model/hyperparameters
on the entire 70% training data and computing accuracy on the previously unused 30% test data. Bold face indicates the lowest error
within a block of comparable methods that was statistically significant.

Oracle Perf. (%) 10-Fold C.V. Performance (%) Test Performance (%)
Dataset Ex-Def Grid Search Ex.Def Grid Rand. Auto- Ex-Def Grid Rand. Auto-
Best Worst Best  Worst Search Search WEKA Search Search WEKA
Dexter 7.78 52.78 3.89 63.33 10.20 5.07 10.60 5.66 8.80 5.00 9.18 7.49
GermanCredit 26.00 38.00 25.00 68.00 22.45 20.20 20.15 17.87 27.33 26.67 29.03 28.24
Dorothea 4.93 99.24 4.64 99.24 6.03 6.73 8.11 5.62 6.96 5.80 5.22 6.21
Yeast 40.00 68.99 36.85 69.89 39.43 39.71 38.74 35.51 40.45 42.47 43.15 40.67
Amazon 28.44 99.33 17.56 99.33 43.94 36.88 59.85 47.34 28.44 20.00 41.11 33.99
Secom 7.87 14.26 7.66 92.13 6.25 6.12 5.24 5.24 8.09 8.09 8.03 8.01
Semeion 8.18 92.45 5.24 92.45 6.52 4.86 6.06 4.78 8.18 6.29 6.10 5.08
Car 0.77 29.15 0.00 46.14 2.71 0.83 0.53 0.61 0.77 0.97 0.01 0.40
Madelon 17.05 50.26 17.05 62.69 25.98 26.46 27.95 20.70 21.38 21.15 24.29 21.12
KR-vs-KP 0.31 48.96 0.21 51.04 0.89 0.64 0.63 0.30 0.31 1.15 0.58 0.31
Abalone 73.18 84.04 72.15 92.90 73.33 72.15 72.03 71.71 73.18 73.42 7T4.88 73.51
Wine Quality 36.35 60.99 32.88 99.39 38.94 35.23 35.36 34.65 37.51 34.06 34.41 33.95
Waveform 14.27 68.80 13.47 68.80 12.73 12.45 12.43 11.92 14.40 14.66 14.27 14.42
Gisette 2.52 50.91 1.81 51.23 3.62 2.59 4.84 2.43 2.81 2.40 4.62 2.24
Convex 25.96  50.00 19.94 71.49 28.68 22.36 33.31 25.93 25.96 23.45 31.20 23.17
CIFAR-10-Small 65.91 90.00 52.16 90.36 66.59 53.64 67.33 58.84 65.91 56.94 66.12 56.87
MNIST Basic 5.19 88.75 2.58 88.75 5.12  2.51 5.05 3.75 5.19 2.64 5.05 3.64
Rot. MNIST + BI 63.14 88.88 55.34 93.01 66.15 56.01 68.62 57.86 63.14 57.59 66.40 57.04
Shuttle 0.0138 20.8414 0.0069 89.8207 0.0328 0.0361 0.0345  0.0224 0.0138 0.0414 0.0157 0.0130
KDDO09-Appentency 1.7400 6.9733 1.6332 54.2400 1.8776 1.8735 1.7510 1.7038 1.7405 1.7400 1.7400 1.7358

CIFAR-10 64.27 90.00 55.27 90.00 65.54 54.04 69.46 62.36 64.27 63.13 69.72 61.15




A stronger baseline we will use is an approach that in addition to selecting
the learner, also sets its hyperparameters optimally from a predefined set. More
precisely, this baseline performs an exhaustive search over a grid of hyperpa-
rameter settings for each of the base learners, discretizing numeric parameters
into three points. We refer to this baseline as grid search and note that—as
an optimization approach in the joint space of algorithms and hyperparameter
settings—it is a simple CASH algorithm. However, it is quite expensive, requiring
more than 10000 CPU hours on each of Gisette, Convex, MNIST, Rot MNIST
+ BI, and both CIFAR variants, rendering it infeasible to use in most practical
applications. (In contrast, we gave Auto-WEKA only 120 CPU hours.)

Table [2] (columns four and five) shows the best and worst “oracle perfor-
mance” on the test set across the classifiers evaluated by grid search. Comparing
these performances to the default performance obtained using Ex-Def, we note
that in most cases, even WEKA'’s best default algorithm could be improved by
selecting better hyperparameter settings, sometimes rather substantially: e.g.,
in the CIFAR-10 small task, grid search offered a 13% reduction in error over
Ex-Def.

It has been demonstrated in previous work that, holding the overall time
budget constant, grid search is outperformed by random search over the hy-
perparameter space [5]. Our final baseline, random search, implements such a
method, picking algorithms and hyperparameters sampled at random, and com-
putes their performance on the 10 cross-validation folds until it exhausts its
time budget. For each dataset, we first used 750 CPU hours to compute the
cross-validation performance of randomly sampled combinations of algorithms
and hyperparameters. We then simulated runs of random search by sampling
combinations without replacement from these results that consumed 120 CPU
hours and returning the sampled combination with the best performance.

5.2 Results for Cross-Validation Performance

The middle portion of Table [2| reports our main results. First, we note that grid
search over the hyperparameters of all base-classifiers yielded better results than
Ex-Def in 17/21 cases, which underlines the importance of not only choosing the
right algorithm but of also setting its hyperparameters well.

However, we note that we gave grid search a very large time budget (often
in excess 10000 CPU hours for each dataset, in total more than 10 CPU years),
meaning that it would often be infeasible to use in practice.

In contrast, we gave each of the other methods only 4 x 30 CPU hours per
dataset; nevertheless, they still yielded substantially better performance than
grid search, outperforming it in 14/21 cases. Random search outperforms grid
search in 9/21 cases, highlighting that even exhaustive grid search with a large
time budget is not always the right thing to do. We note that sometimes Auto-
WEKA'’s performance improvements over the baselines were substantial, with
relative reductions of the cross-validation loss (in this case the misclassification
rate) exceeding 10% in 6/21 cases.



5.3 Results for Test Performance

The results just shown demonstrate that Auto-WEKA is effective at optimizing
its given objective function; however, this is not sufficient to allow us to conclude
that it fits models that generalize well. As the number of hyperparameters of
a machine learning algorithm grows, so does its potential for overfitting. The
use of cross-validation substantially increases Auto-WEKA'’s robustness against
overfitting, but since its hyperparameter space is much larger than that of stan-
dard classification algorithms, it is important to carefully study whether (and
to what extent) overfitting poses a problem.

To evaluate generalization, we determined a combination of algorithm and
hyperparameter settings Ay by running Auto-WEKA as before (cross-validating
on the training set), trained A, on the entire training set, and then evaluated
the resulting model on the test set. The right portion of Table [2| reports the test
performance obtained with all methods.

Broadly speaking, similar trends held as for cross-validation performance:
Auto-WEKA outperforms the baselines, with grid search and random search per-
forming better than Ex-Def. However, the performance differences were less pro-
nounced: grid search only yields better results than Ex-Def in 15/21 cases, and
random search in turn outperforms grid search in 7/21 cases. Auto-WEKA out-
performs the baselines in 15/21 cases. Notably, on 12 of the 13 largest datasets,
Auto-WEKA outperforms our baselines; we attribute this to the fact that the
risk of overfitting decreases with dataset size. Sometimes, Auto-WEKA’s per-
formance improvements over the other methods were substantial, with relative
reductions of the test misclassification rate exceeding 16% in 3/21 cases.

As mentioned earlier, Auto-WEKA only used 70% of its training set during
the optimization of cross-validation performance, reserving the remaining 30%
for assessing the risk of overfitting. At any point in time, Auto-WEKA’s SMBO
method keeps track of its incumbent (the hyperparameter configuration with
the lowest cross-validation misclassification rate seen so far). After its SMBO
procedure has finished, Auto-WEKA extracts a trajectory of these incumbents
from it and computes their generalization performance on the withheld 30%
validation data. It then computes the Spearman rank coefficient between the
sequence of training performances (evaluated by the SMBO method through
cross-validation) and this generalization performance.

6 Conclusion

In this work, we have shown that the daunting problem of combined algorithm
selection and hyperparameter optimization (CASH) can be solved by a practi-
cal, fully automated tool. This is made possible by recent Bayesian optimization
techniques that iteratively build models of the algorithm/hyperparameter land-
scape and leverage these models to identify new points in the space that deserve
investigation.

We built a tool, Auto-WEKA, that draws on the full range of learning algo-
rithms in WEKA and makes it easy for non-experts to build high-quality clas-



sifiers for given application scenarios. An extensive empirical comparison on 21
prominent datasets showed that Auto-WEKA often outperformed standard al-
gorithm selection and hyperparameter optimization methods, especially on large
datasets.

6.1 Community Adoption

Auto-WEKA was the first method to use Bayesian optimization to automati-
cally instantiate a highly parametric machine learning framework at the push of
a button. Since its initial release, it has been adopted by many users in industry
and academia; the 2.0 line, which integrates with the WEKA package manager,
has been downloaded more than 30,000 times, averaging more than 550 down-
loads a week. It is under active development, with new features added recently
and in the pipeline.
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