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Abstract. Deep Learning has enabled remarkable progress over the last
years on a variety of tasks, such as image recognition, speech recognition,
and machine translation. One crucial aspect for this progress are novel
neural architectures. Currently employed architectures have mostly been
developed manually by human experts, which is a time-consuming and
error-prone process. Because of this, there is growing interest in auto-
mated neural architecture search methods. We provide an overview of
existing work in this field of research and categorize them according to
three dimensions: search space, search strategy, and performance estima-
tion strategy.
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1 Introduction

The success of deep learning in perceptual tasks is largely due to its automation
of the feature engineering process: hierarchical feature extractors are learned in
an end-to-end fashion from data rather than manually designed. This success
has been accompanied, however, by a rising demand for architecture engineer-
ing, where increasingly more complex neural architectures are designed manually.
Neural Architecture Search (NAS), the process of automating architecture en-
gineering, is thus a logical next step in automating machine learning. NAS can
be seen as subfield of AutoML and has significant overlap with hyperparame-
ter optimization and meta-learning. We categorize methods for NAS according
to three dimensions: search space, search strategy, and performance estimation
strategy:

• Search Space. The search space defines which architectures can be rep-
resented in principle. Incorporating prior knowledge about properties well-
suited for a task can reduce the size of the search space and simplify the
search. However, this also introduces a human bias, which may prevent find-
ing novel architectural building blocks that go beyond the current human
knowledge.

• Search Strategy. The search strategy details how to explore the search
space. It encompasses the classical exploration-exploitation trade-off since,
on the one hand, it is desirable to find well-performing architectures quickly,
while on the other hand, premature convergence to a region of suboptimal
architectures should be avoided.
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• Performance Estimation Strategy. The objective of NAS is typically to
find architectures that achieve high predictive performance on unseen data.
Performance Estimation refers to the process of estimating this performance:
the simplest option is to perform a standard training and validation of the
architecture on data, but this is unfortunately computationally expensive
and limits the number of architectures that can be explored. Much recent
research therefore focuses on developing methods that reduce the cost of
these performance estimations.

We refer to Figure 1 for an illustration. The chapter is also structured accord-
ing to these three dimensions: we start with discussing search spaces in Section
2, cover search strategies in Section 3, and outline approaches to performance
estimation in Section 4. We conclude with an outlook on future directions in
Section 5.

Performance
Estimation
Strategy

Search Space

A
Search Strategy

architecture
A ∈ A
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estimate of A

Fig. 1. Abstract illustration of Neural Architecture Search methods. A search strategy
selects an architecture A from a predefined search space A. The architecture is passed
to a performance estimation strategy, which returns the estimated performance of A
to the search strategy.

2 Search Space

The search space defines which neural architectures a NAS approach might dis-
cover in principle. We now discuss common search spaces from recent works.

A relatively simple search space is the space of chain-structured neural net-
works, as illustrated in Figure 2 (left). A chain-structured neural network ar-
chitecture A can be written as a sequence of n layers, where the i’th layer Li

receives its input from layer i − 1 and its output serves as the input for layer
i+ 1, i.e., A = Ln ◦ . . . L1 ◦L0. The search space is then parametrized by: (i) the
(maximum) number of layers n (possibly unbounded); (ii) the type of operation
every layer can execute , e.g., pooling, convolution, or more advanced layer types
like depthwise separable convolutions (Chollet, 2016) or dilated convolutions (Yu
and Koltun, 2016); and (iii) hyperparameters associated with the operation, e.g.,
number of filters, kernel size and strides for a convolutional layer (Baker et al,
2017a; Suganuma et al, 2017; Cai et al, 2018a), or simply number of units for
fully-connected networks (Mendoza et al, 2016). Note that the parameters from
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(iii) are conditioned on (ii), hence the parametrization of the search space is not
fixed-length but rather a conditional space.
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Fig. 2. An illustration of different architecture spaces. Each node in the graphs corre-
sponds to a layer in a neural network, e.g., a convolutional or pooling layer. Different
layer types are visualized by different colors. An edge from layer Li to layer Lj de-
notes that Li receives the output of Lj as input. Left: an element of a chain-structured
space. Right: an element of a more complex search space with additional layer types
and multiple branches and skip connections.

Recent work on NAS (Brock et al, 2017; Elsken et al, 2017; Zoph et al,
2018; Elsken et al, 2018; Real et al, 2018; Cai et al, 2018b) incorporate mod-
ern design elements known from hand-crafted architectures such as skip con-
nections, which allow to build complex, multi-branch networks, as illustrated
in Figure 2 (right). In this case the input of layer i can be formally described
as a function gi(L

out
i−1, . . . , L

out
0 ) combining previous layer outputs. Employing

such a function results in significantly more degrees of freedom. Special cases of
these multi-branch architectures are (i) the chain-structured networks (by setting
gi(L

out
i−1, . . . , L

out
0 ) = Lout

i−1), (ii) Residual Networks (He et al, 2016), where previ-
ous layer outputs are summed (gi(L

out
i−1, . . . , L

out
0 ) = Lout

i−1 +Lout
j , j < i) and (iii)

DenseNets (Huang et al, 2017), where previous layer outputs are concatenated
(gi(L

out
i−1, . . . , L

out
0 ) = concat(Lout

i−1, . . . , L
out
0 )).

Motivated by hand-crafted architectures consisting of repeated motifs (Szegedy
et al, 2016; He et al, 2016; Huang et al, 2017), Zoph et al (2018) propose to search
for such motifs, dubbed cells, rather than for whole architectures. They optimize
two different kind of cells: a normal cell that preservers the dimensionality of
the input and a reduction cell which reduces the spatial dimension. The final
architecture is then built by stacking these cells in a predefined manner, as il-
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lustrated in Figure 3. This search space has two major advantages compared to
the ones discussed above:

1. The size of the search space is drastically reduced since cells can be compa-
rably small. For example, Zoph et al (2018) estimate a seven-times speed-up
compared to their previous work (Zoph and Le, 2017) while achieving better
performance.

2. Cells can more easily be transferred to other datasets by adapting the number
of cells used within a model. Indeed, Zoph et al (2018) transfer cells optimized
on CIFAR-10 to ImageNet and achieve state-of-the-art performance.

input

input

output

output

input

output

Fig. 3. Illustration of the cell search space. Left: Two different cells, e.g., a normal cell
(top) and a reduction cell (bottom) (Zoph et al, 2018). Right: an architecture built by
stacking the cells sequentially. Note that cells can also be combined in a more complex
manner, such as in multi-branch spaces, by simply replacing layers with cells.

Consequently, this cell-based search space was also successfully employed by
many later works (Real et al, 2018; Liu et al, 2017; Pham et al, 2018; Elsken
et al, 2018; Cai et al, 2018b; Liu et al, 2018b). However, a new design-choice
arises when using a cell-based search space, namely how to choose the meta-
architecture: how many cells shall be used and how should they be connected to
build the actual model? For example, Zoph et al (2018) build a sequential model
from cells, in which each cell receives the outputs of the two preceding cells
as input, while Cai et al (2018b) employ the high-level structure of well-known
manually designed architectures, such as DenseNet (Huang et al, 2017), and use
their cells within these models. In principle, cells can be combined arbitrarily,
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e.g., within the multi-branch space described above by simply replacing layers
with cells. Ideally, the meta-architecture should be optimized automatically as
part of NAS; otherwise one easily ends up doing meta-architecture engineering
and the search for the cell becomes overly simple if most of the complexity is
already accounted for by the meta-architecture.

One step in the direction of optimizing meta-architectures is the hierarchical
search space introduced by Liu et al (2018a), which consists of several levels
of motifs. The first level consists of the set of primitive operations, the second
level of different motifs that connect primitive operations via a direct acyclic
graphs, the third level of motifs that encode how to connect second-level motifs,
and so on. The cell-based search space can be seen as a special case of this
hierarchical search space where the number of levels is three, the second level
motifs corresponds to the cells, and the third level is the hard-coded meta-
architecture.

The choice of the search space largely determines the difficulty of the opti-
mization problem: even for the case of the search space based on a single cell with
fixed meta-architecture, the optimization problem remains (i) non-continuous
and (ii) relatively high-dimensional (since more complex models tend to per-
form better, resulting in more design choices). We note that the architectures in
many search spaces can be written as fixed-length vectors; e.g., the search space
for each of the two cells by Zoph et al (2018) can be written as a 40-dimensional
search space with categorical dimensions, each of which chooses between a small
number of different building blocks and inputs. Similarly, unbounded search
spaces can be constrained to have a maximal depth, giving rise to fixed-size
search spaces with (potentially many) conditional dimensions.

In the next section, we discuss Search Strategies that are well-suited for these
kinds of search spaces.

3 Search Strategy

Many different search strategies can be used to explore the space of neural archi-
tectures, including random search, Bayesian optimization, evolutionary methods,
reinforcement learning (RL), and gradient-based methods. Historically, evolu-
tionary algorithms were already used by many researchers to evolve neural ar-
chitectures (and often also their weights) decades ago (see, e.g., Angeline et al,
1994; Stanley and Miikkulainen, 2002; Floreano et al, 2008; Stanley et al, 2009).

Bayesian optimization celebrated several early successes in NAS since 2013,
leading to state-of-the-art vision architectures (Bergstra et al, 2013), state-of-
the-art performance for CIFAR-10 without data augmentation (Domhan et al,
2015), and the first automatically-tuned neural networks to win competition
datasets against human experts (Mendoza et al, 2016). NAS became a main-
stream research topic in the machine learning community after Zoph and Le
(2017) obtained competitive performance on the CIFAR-10 and Penn Treebank
benchmarks with a search strategy based on reinforcement learning. As Zoph and
Le (2017) use vast computational resources to achieve this result (800 GPUs for



6 Elsken et al.

three to four weeks), after their work, a wide variety of methods have been pub-
lished in quick succession to reduce the computational costs and achieve further
improvements in performance.

To frame NAS as a reinforcement learning (RL) problem (Baker et al, 2017a;
Zoph and Le, 2017; Zhong et al, 2018; Zoph et al, 2018), the generation of a neu-
ral architecture can be considered to be the agent’s action, with the action space
identical to the search space. The agent’s reward is based on an estimate of
the performance of the trained architecture on unseen data (see Section 4). Dif-
ferent RL approaches differ in how they represent the agent’s policy and how
they optimize it: Zoph and Le (2017) use a recurrent neural network (RNN)
policy to sequentially sample a string that in turn encodes the neural architec-
ture. They initially trained this network with the REINFORCE policy gradient
algorithm, but in follow-up work use Proximal Policy Optimization (PPO) in-
stead (Zoph et al, 2018). Baker et al (2017a) use Q-learning to train a policy
which sequentially chooses a layer’s type and corresponding hyperparameters.
An alternative view of these approaches is as sequential decision processes in
which the policy samples actions to generate the architecture sequentially, the
environment’s “state” contains a summary of the actions sampled so far, and
the (undiscounted) reward is obtained only after the final action. However, since
no interaction with an environment occurs during this sequential process (no ex-
ternal state is observed, and there are no intermediate rewards), we find it more
intuitive to interpret the architecture sampling process as the sequential genera-
tion of a single action; this simplifies the RL problem to a stateless multi-armed
bandit problem.

A related approach was proposed by Cai et al (2018a), who frame NAS as
a sequential decision process: in their approach the state is the current (par-
tially trained) architecture, the reward is an estimate of the architecture’s per-
formance, and the action corresponds to an application of function-preserving
mutations, dubbed network morphisms (Chen et al, 2016; Wei et al, 2017), see
also Section 4, followed by a phase of training the network. In order to deal
with variable-length network architectures, they use a bi-directional LSTM to
encode architectures into a fixed-length representation. Based on this encoded
representation, actor networks decide on the sampled action. The combination
of these two components constitute the policy, which is trained end-to-end with
the REINFORCE policy gradient algorithm. We note that this approach will
not visit the same state (architecture) twice so that strong generalization over
the architecture space is required from the policy.

An alternative to using RL are neuro-evolutionary approaches that use evolu-
tionary algorithms for optimizing the neural architecture. Early neuro-evolutionary
approaches (Angeline et al, 1994; Stanley and Miikkulainen, 2002; Floreano et al,
2008; Stanley et al, 2009) use genetic algorithms to optimize both the neu-
ral architecture and its weights; however, this is problematic when scaling to
contemporary neural architectures with millions of weights. More recent neuro-
evolutionary approaches (Real et al, 2017; Suganuma et al, 2017; Liu et al,
2018a; Real et al, 2018; Miikkulainen et al, 2017; Xie and Yuille, 2017; Elsken
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et al, 2018) use gradient-based methods for optimizing weights and evolutionary
algorithms are used solely for optimizing the neural architecture itself. Evolu-
tionary algorithms evolve a population of models, i.e., a set of (possibly trained)
networks; in every evolution step, at least one model from the population is sam-
pled and serves as a parent to generate offsprings by applying mutations to it. In
the context of NAS, mutations are local operations, such as adding or removing
a layer, altering the hyperparameters of a layer, adding skip connections, as well
as altering training hyperparameters. After training the offsprings, their fitness
(e.g., performance on a validation set) is evaluated and they are added to the
population.

Neuro-evolutionary methods differ in how they sample parents, update popu-
lations, and generate offsprings. For example, Real et al (2017), Real et al (2018),
and Liu et al (2018a) use tournament selection (Goldberg and Deb, 1991) to sam-
ple parents, whereas Elsken et al (2018) sample parents from a multi-objective
Pareto front using an inverse density. Real et al (2017) remove the worst indi-
vidual from a population, while Real et al (2018) found it beneficial to remove
the oldest individual (which decreases greediness), and Liu et al (2018a) do not
remove individuals at all. To generate offspring, most approaches initialize child
networks randomly, while Elsken et al (2018) employ Lamarckian inheritance,
i.e, knowledge (in the form of learned weights) is passed on from a parent net-
work to its children by using network morphisms. Real et al (2017) also let an
offspring inherit all parameters of its parent that are not affected by the applied
mutation; while this inheritance is not strictly function-preserving it might also
speed up learning compared to a random initialization. Moreover, they also al-
low mutating the learning rate which can be seen as a way for optimizing the
learning rate schedule during NAS.

Real et al (2018) conduct a case study comparing RL, evolution, and random
search (RS), concluding that RL and evolution perform equally well in terms of
final test accuracy, with evolution having better anytime performance and find-
ing smaller models. Both approaches consistently perform better than RS in their
experiments, but with a rather small margin: RS achieved test errors of approx-
imately 4% on CIFAR-10, while RL and evolution reached approximately 3.5%
(after “model augmentation” where depth and number of filters was increased;
the difference on the actual, non-augmented search space was approx. 2%). The
difference was even smaller for Liu et al (2018a), who reported a test error of
3.9% on CIFAR-10 and a top-1 validation error of 21.0% on ImageNet for RS,
compared to 3.75% and 20.3% for their evolution-based method, respectively.

Bayesian Optimization (BO) is one of the most popular methods for hyper-
parameter optimization, but it has not been applied to NAS by many groups
since typical BO toolboxes are based on Gaussian processes and focus on low-
dimensional continuous optimization problems. Swersky et al (2013) and Kan-
dasamy et al (2018) derive kernel functions for architecture search spaces in order
to use classic GP-based BO methods, but so far without achieving new state-of-
the-art performance. In contrast, several works use tree-based models (in par-
ticular, treed Parzen estimators (Bergstra et al, 2011), or random forests (Hut-
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ter et al, 2011)) to effectively search very high-dimensional conditional spaces
and achieve state-of-the-art performance on a wide range of problems, optimiz-
ing both neural architectures and their hyperparameters jointly (Bergstra et al,
2013; Domhan et al, 2015; Mendoza et al, 2016; Zela et al, 2018). While a full
comparison is lacking, there is preliminary evidence that these approaches can
also outperform evolutionary algorithms (Klein et al, 2018).

Architectural search spaces have also been explored in a hierarchical manner,
e.g., in combination with evolution (Liu et al, 2018a) or by sequential model-
based optimization (Liu et al, 2017). Negrinho and Gordon (2017) and Wistuba
(2017) exploit the tree-structure of their search space and use Monte Carlo Tree
Search. Elsken et al (2017) propose a simple yet well performing hill climbing
algorithm that discovers high-quality architectures by greedily moving in the
direction of better performing architectures without requiring more sophisticated
exploration mechanisms.

In contrast to the gradient-free optimization methods above, Liu et al (2018b)
propose a continuous relaxation of the search space to enable gradient-based
optimization: instead of fixing a single operation oi (e.g., convolution or pooling)
to be executed at a specific layer, the authors compute a convex combination
from a set of operations {o1, . . . , om}. More specifically, given a layer input x, the
layer output y is computed as y =

∑m
i=1 λioi(x), λi ≥ 0,

∑m
i=1 λi = 1, where the

convex coefficients λi effectively parameterize the network architecture. Liu et al
(2018b) then optimize both the network weights and the network architecture by
alternating gradient descent steps on training data for weights and on validation
data for architectural parameters such as λ. Eventually, a discrete architecture
is obtained by choosing the operation i with i = arg maxi λi for every layer.
Shin et al (2018) and Ahmed and Torresani (2017) also employ gradient-based
optimization of neural architectures, however they only consider optimizing layer
hyperparameters or connectivity patterns, respectively.

4 Performance Estimation Strategy

The search strategies discussed in Section 3 aim at finding a neural architecture A
that maximizes some performance measure, such as accuracy on unseen data. To
guide their search process, these strategies need to estimate the performance of a
given architecture A they consider. The simplest way of doing this is to train A on
training data and evaluate its performance on validation data. However, training
each architecture to be evaluated from scratch frequently yields computational
demands in the order of thousands of GPU days for NAS (Zoph and Le, 2017;
Real et al, 2017; Zoph et al, 2018; Real et al, 2018).

To reduce this computational burden, performance can be estimated based
on lower fidelities of the actual performance after full training (also denoted as
proxy metrics). Such lower fidelities include shorter training times (Zoph et al,
2018; Zela et al, 2018), training on a subset of the data (Klein et al, 2017a), on
lower-resolution images (Chrabaszcz et al, 2017), or with less filters per layer
(Zoph et al, 2018; Real et al, 2018). While these low-fidelity approximations
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reduce the computational cost, they also introduce bias in the estimate as per-
formance will typically be underestimated. This may not be problematic as long
as the search strategy only relies on ranking different architectures and the rel-
ative ranking remains stable. However, recent results indicate that this relative
ranking can change dramatically when the difference between the cheap approx-
imations and the “full” evaluation is too big (Zela et al, 2018), arguing for a
gradual increase in fidelities (Li et al, 2017; Falkner et al, 2018).

Another possible way of estimating an architecture’s performance builds upon
learning curve extrapolation (Swersky et al, 2014; Domhan et al, 2015; Klein
et al, 2017b; Baker et al, 2017b). Domhan et al (2015) propose to extrapolate
initial learning curves and terminate those predicted to perform poorly to speed
up the architecture search process. Swersky et al (2014), Klein et al (2017b), and
Baker et al (2017b) also consider architectural hyperparameters for predicting
which partial learning curves are most promising. Training a surrogate model for
predicting the performance of novel architectures is also proposed by Liu et al
(2017), who do not employ learning curve extrapolation but support predicting
performance based on architectural/cell properties and extrapolate to architec-
tures/cells with larger size than seen during training. The main challenge for
predicting the performances of neural architectures is that, in order to speed up
the search process, good predictions in a relatively large search space need to be
made based on relatively few evaluations.

Another approach to speed up performance estimation is to initialize the
weights of novel architectures based on weights of other architectures that have
been trained before. One way of achieving this, dubbed network morphisms (Wei
et al, 2016), allows modifying an architecture while leaving the function repre-
sented by the network unchanged (Cai et al, 2018a,b; Elsken et al, 2017; Elsken
et al, 2018). This allows increasing capacity of networks successively and re-
taining high performance without requiring training from scratch. Continuing
training for a few epochs can also make use of the additional capacity intro-
duced by network morphisms. An advantage of these approaches is that they
allow search spaces without an inherent upper bound on the architecture’s size
(Elsken et al, 2017); on the other hand, strict network morphisms can only make
architectures larger and may thus lead to overly complex architectures. This
can be attenuated by employing approximate network morphisms that allow
shrinking architectures (Elsken et al, 2018).

One-Shot Architecture Search is another promising approach for speeding up
performance estimation, which treats all architectures as different subgraphs of a
supergraph (the one-shot model) and shares weights between architectures that
have edges of this supergraph in common (Saxena and Verbeek, 2016; Brock et al,
2017; Pham et al, 2018; Liu et al, 2018b; Bender et al, 2018). Only the weights
of the one-shot model are trained, and architectures (which are just subgraphs
of the one-shot model) can thereupon be evaluated without any further training
by inheriting trained weights from the one-shot model. This greatly speeds up
performance estimation of architectures, since no training is required (only eval-
uating performance on validation data). This approach typically incurs a large
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bias as it underestimates the actual performance of architectures severely; never-
theless, it allows ranking architectures reliably, since the estimated performance
correlates strongly with the actual performance (Bender et al, 2018). Different
one-shot NAS methods differ in how the one-shot model is trained: ENAS (Pham
et al, 2018) learns an RNN controller that samples architectures from the search
space and trains the one-shot model based on approximate gradients obtained
through REINFORCE. DARTS (Liu et al, 2018b) optimizes all weights of the
one-shot model jointly with a continuous relaxation of the search space obtained
by placing a mixture of candidate operations on each edge of the one-shot model.
Bender et al (2018) only train the one-shot model once and show that this is
sufficient when deactivating parts of this model stochastically during training
using path dropout. While ENAS and DARTS optimize a distribution over ar-
chitectures during training, the approach of Bender et al (2018) can be seen as
using a fixed distribution. The high performance obtainable by the approach of
Bender et al (2018) indicates that the combination of weight sharing and a fixed
(carefully chosen) distribution might (perhaps surprisingly) be the only required
ingredients for one-shot NAS. Related to these approaches is meta-learning of
hypernetworks that generate weights for novel architectures and thus requires
only training the hypernetwork but not the architectures themselves (Brock et al,
2017). The main difference here is that weights are not strictly shared but sam-
pled from a distribution that is conditioned on the architecture and represented
by the hypernetwork.

A general limitation of one-shot NAS is that the supergraph defined a-priori
restricts the search space to its subgraphs. Moreover, approaches which require
that the entire supergraph resides in GPU memory during architecture search
will be restricted to relatively small supergraphs and search spaces accordingly
and are thus typically used in combination with cell-based search spaces. While
approaches based on weight-sharing have substantially reduced the computa-
tional resources required for NAS (from thousands to a few GPU days), it is
currently not well understood which biases they introduce into the search if
the sampling distribution of architectures is optimized along with the one-shot
model. For instance, an initial bias in exploring certain parts of the search space
more than others might lead to the weights of the one-shot model being better
adapted for these architectures, which in turn would reinforce the bias of the
search to these parts of the search space. This might result in premature con-
vergence of NAS and might be one advantage of a fixed sampling distribution
as used by Bender et al (2018). In general, a more systematic analysis of biases
introduced by different performance estimators would be a desirable direction
for future work.

5 Future Directions

In this section, we discuss several current and future directions for research on
NAS. Most existing work has focused on NAS for image classification. On the one
hand, this provides a challenging benchmark since a lot of manual engineering
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has been devoted to finding architectures that perform well in this domain and
are not easily outperformed by NAS. On the other hand, it is relatively easy to
define a well-suited search space by utilizing knowledge from manual engineering.
This in turn makes it unlikely that NAS will find architectures that substantially
outperform existing ones considerably since the found architectures cannot differ
fundamentally. We thus consider it important to go beyond image classification
problems by applying NAS to less explored domains. Notable first steps in this
direction are applying NAS to language modeling (Zoph and Le, 2017), music
modeling (Rawal and Miikkulainen, 2018), and generative models (Suganuma
et al, 2018); applications to reinforcement learning, generative adversarial net-
works, or sensor fusion could be further promising future directions.

An alternative direction is developing NAS methods for multi-task problems
(Liang et al, 2018; Meyerson and Miikkulainen, 2018) and for multi-objective
problems (Elsken et al, 2018; Dong et al, 2018; Zhou et al, 2018), in which
measures of resource efficiency are used as objectives along with the predic-
tive performance on unseen data. Likewise, it would be interesting to extend
RL/bandit approaches, such as those discussed in Section 3, to learn policies
that are conditioned on a state that encodes task properties/resource require-
ments (i.e., turning the setting into a contextual bandit). A similar direction was
followed by Ramachandran and Le (2018) in extending one-shot NAS such that
it can generate different architectures depending on the task or instance on-the-
fly. Moreover, applying NAS to searching for architectures that are more robust
to adversarial examples (Cubuk et al, 2017) is an intriguing recent direction.

Related to this is research on defining more general and flexible search spaces.
For instance, while the cell-based search space provides high transferability be-
tween different image classification tasks, it is largely based on human experience
on image classification and does not generalize easily to other domains where
the hard-coded hierarchical structure (repeating the same cells several times in
a chain-like structure) does not apply (e.g., semantic segmentation or object de-
tection). A search space which allows representing and identifying more general
hierarchical structure would thus make NAS more broadly applicable, see Liu
et al (2018a) for first work in this direction. Moreover, common search spaces are
also based on predefined building blocks, such as different kinds of convolutions
and pooling, but do not allow identifying novel building blocks on this level;
going beyond this limitation might substantially increase the power of NAS.

The comparison of different methods for NAS is complicated by the fact that
measurements of an architecture’s performance depend on many factors other
than the architecture itself. While most authors report results on the CIFAR-10
dataset, experiments often differ with regard to search space, computational bud-
get, data augmentation, training procedures, regularization, and other factors.
For example, for CIFAR-10, performance substantially improves when using a
cosine annealing learning rate schedule (Loshchilov and Hutter, 2017), data aug-
mentation by CutOut (Devries and Taylor, 2017), by MixUp (Zhang et al, 2017)
or by a combination of factors (Cubuk et al, 2018), and regularization by Shake-
Shake regularization (Gastaldi, 2017) or scheduled drop-path (Zoph et al, 2018).
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It is therefore conceivable that improvements in these ingredients have a larger
impact on reported performance numbers than the better architectures found by
NAS. We thus consider the definition of common benchmarks to be crucial for
a fair comparison of different NAS methods. A first step in this direction is the
definition of a benchmark for joint architecture and hyperparameter search for
a fully connected neural network with two hidden layers (Klein et al, 2018). In
this benchmark, nine discrete hyperparameters need to be optimized that control
both architecture and optimization/regularization. All 62.208 possible hyperpa-
rameter combinations have been pre-evaluated such that different methods can
be compared with low computational resources. However, the search space is still
very simple compared to the spaces employed by most NAS methods. It would
also be interesting to evaluate NAS methods not in isolation but as part of a
full open-source AutoML system, where also hyperparameters (Mendoza et al,
2016; Real et al, 2017; Zela et al, 2018), and data augmentation pipeline (Cubuk
et al, 2018) are optimized along with NAS.

While NAS has achieved impressive performance, so far it provides little in-
sights into why specific architectures work well and how similar the architectures
derived in independent runs would be. Identifying common motifs, providing an
understanding why those motifs are important for high performance, and inves-
tigating if these motifs generalize over different problems would be desirable.
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