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Abstract. As data science becomes increasingly mainstream, there will
be an ever-growing demand for data science tools that are more ac-
cessible, flexible, and scalable. In response to this demand, automated
machine learning (AutoML) researchers have begun building systems
that automate the process of designing and optimizing machine learning
pipelines. In this chapter we present TPOT v0.3, an open source genetic
programming-based AutoML system that optimizes a series of feature
preprocessors and machine learning models with the goal of maximiz-
ing classification accuracy on a supervised classification task. We bench-
mark TPOT on a series of 150 supervised classification tasks and find
that it significantly outperforms a basic machine learning analysis in 21
of them, while experiencing minimal degradation in accuracy on 4 of
the benchmarks—all without any domain knowledge nor human input.
As such, genetic programming-based AutoML systems show considerable
promise in the AutoML domain.
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1 Introduction

Machine learning is commonly described as a “field of study that gives comput-
ers the ability to learn without being explicitly programmed” [18]. Despite this
common claim, experienced machine learning practitioners know that design-
ing effective machine learning pipelines is often a tedious endeavor, and typi-
cally requires considerable experience with machine learning algorithms, expert
knowledge of the problem domain, and time-intensive brute force search to ac-
complish [13]. Thus, contrary to what machine learning enthusiasts would have
us believe, machine learning still requires considerable explicit programming.
In response to this challenge, several automated machine learning methods
have been developed over the years [10]. Over the past several years, we have
been developing a Tree-based Pipeline Optimization Tool (TPOT) that auto-
matically designs and optimizes machine learning pipelines for a given problem
domain [15], without any need for human intervention. In short, TPOT opti-
mizes machine learning pipelines using a version of genetic programming (GP),



a well-known evolutionary computation technique for automatically constructing
computer programs [1]. Previously, we demonstrated that combining GP with
Pareto optimization enables TPOT to automatically construct high-accuracy
and compact pipelines that consistently outperform basic machine learning anal-
yses [13]. In this chapter, we extend that benchmark to include 150 supervised
classification tasks and evaluate TPOT in a wide variety of application domains
ranging from genetic analyses to image classification and more.

2 Methods

In the following sections, we provide an overview of the Tree-based Pipeline Op-
timization Tool (TPOT) v0.3, including the machine learning operators used as
genetic programming (GP) primitives, the tree-based pipelines used to combine
the primitives into working machine learning pipelines, and the GP algorithm
used to evolve said tree-based pipelines. We follow with a description of the
datasets used to evaluate the latest version of TPOT in this chapter. TPOT
is an open source project on GitHub, and the underlying Python code can be
found at https://github.com/rhiever/tpot.

2.1 Machine Learning Pipeline Operators

At its core, TPOT is a wrapper for the Python machine learning package, scikit-
learn [16]. Thus, each machine learning pipeline operator (i.e., GP primitive) in
TPOT corresponds to a machine learning algorithm, such as a supervised clas-
sification model or standard feature scaler. All implementations of the machine
learning algorithms listed below are from scikit-learn (except XGBoost), and we
refer to the scikit-learn documentation [16] and [9] for detailed explanations of
the machine learning algorithms used in TPOT.

Supervised Classification Operators. DecisionTree, RandomForest, eX-
treme Gradient Boosting Classifier (from XGBoost, [3]), LogisticRegression, and
KNearestNeighborClassifier. Classification operators store the classifier’s predic-
tions as a new feature as well as the classification for the pipeline.

Feature Preprocessing Operators. StandardScaler, RobustScaler, Min-
MaxScaler, MaxAbsScaler, RandomizedPCA [12], Binarizer, and PolynomialFea-
tures. Preprocessing operators modify the dataset in some way and return the
modified dataset.

Feature Selection Operators. VarianceThreshold, SelectKBest, SelectPer-
centile, SelectFwe, and Recursive Feature Elimination (RFE). Feature selection
operators reduce the number of features in the dataset using some criteria and
return the modified dataset.

We also include an operator that combines disparate datasets, as demon-
strated in Figure 1, which allows multiple modified variants of the dataset to be
combined into a single dataset. Additionally, TPOT v0.3 does not include miss-
ing value imputation operators, and therefore does not support datasets with
missing data. Lastly, we provide integer and float terminals to parameterize the



various operators, such as the number of neighbors k in the k-Nearest Neighbors
Classifier.
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Fig. 1. An example tree-based pipeline from TPOT. Each circle corresponds to a ma-
chine learning operator, and the arrows indicate the direction of the data flow.

2.2 Constructing Tree-based Pipelines

To combine these operators into a machine learning pipeline, we treat them as
GP primitives and construct GP trees from them. Figure 1 shows an example
tree-based pipeline, where two copies of the dataset are provided to the pipeline,
modified in a successive manner by each operator, combined into a single dataset,
and finally used to make classifications. Other than the restriction that every
pipeline must have a classifier as its final operator, it is possible to construct
arbitrarily shaped machine learning pipelines that can act on multiple copies
of the dataset. Thus, GP trees provide an inherently flexible representation of
machine learning pipelines.

In order for these tree-based pipelines to operate, we store three additional
variables for each record in the dataset. The “class” variable indicates the true
label for each record, and is used when evaluating the accuracy of each pipeline.
The “guess” variable indicates the pipeline’s latest guess for each record, where
the predictions from the final classification operator in the pipeline are stored
as the “guess”. Finally, the “group” variable indicates whether the record is to
be used as a part of the internal training or testing set, such that the tree-based
pipelines are only trained on the training data and evaluated on the testing data.
We note that the dataset provided to TPOT as training data is further split into
an internal stratified 75%/25% training/testing set.



2.3 Optimizing Tree-based Pipelines

To automatically generate and optimize these tree-based pipelines, we use a ge-
netic programming (GP) algorithm [1] as implemented in the Python package
DEAP [7]. The TPOT GP algorithm follows a standard GP process: To be-
gin, the GP algorithm generates 100 random tree-based pipelines and evaluates
their balanced cross-validation accuracy on the dataset. For every generation of
the GP algorithm, the algorithm selects the top 20 pipelines in the population
according to the NSGA-II selection scheme [4], where pipelines are selected to
simultaneously maximize classification accuracy on the dataset while minimizing
the number of operators in the pipeline. Each of the top 20 selected pipelines pro-
duce five copies (i.e., offspring) into the next generation’s population, 5% of those
offspring cross over with another offspring using one-point crossover, then 90%
of the remaining unaffected offspring are randomly changed by a point, insert, or
shrink mutation (1/3 chance of each). Every generation, the algorithm updates
a Pareto front of the non-dominated solutions [4] discovered at any point in the
GP run. The algorithm repeats this evaluate-select-crossover-mutate process for
100 generations—adding and tuning pipeline operators that improve classifica-
tion accuracy and pruning operators that degrade classification accuracy—at
which point the algorithm selects the highest-accuracy pipeline from the Pareto
front as the representative “best” pipeline from the run.

2.4 Benchmark Data

We compiled 150 supervised classification benchmarks' from a wide variety of
sources, including the UCI machine learning repository [11], a large preexist-
ing benchmark repository from [17], and simulated genetic analysis datasets
from [19]. These benchmark datasets range from 60 to 60,000 records, few to
hundreds of features, and include binary as well as multi-class supervised classi-
fication problems. We selected datasets from a wide range of application domains,
including genetic analysis, image classification, time series analysis, and many
more. Thus, this benchmark—called the Penn Machine Learning Benchmark
(PMLB) [14]—represents a comprehensive suite of tests with which to evaluate
automated machine learning systems.

3 Results

To evaluate TPOT, we ran 30 replicates of it on each of the 150 benchmarks,
where each replicate had 8 hours to complete 100 generations of optimization
(i.e., 100 x 100 = 10,000 pipeline evaluations). In each replicate, we divided
the dataset into a stratified 75%/25% training/testing split and used a distinct
random number generator seed for each split and subsequent TPOT run.

In order to provide a reasonable control as a baseline comparison, we sim-
ilarly evaluated 30 replicates of a Random Forest with 500 trees on the 150

! Benchmark data at https://github.com/EpistasisLab/penn-ml-benchmarks



benchmarks, which is meant to represent a basic machine learning analysis that
a novice practitioner would perform. We also ran 30 replicates of a version of
TPOT that randomly generates and evaluates the same number of pipelines
(10,000), which is meant to represent a random search in the TPOT pipeline
space. In all cases, we measured accuracy of the resulting pipelines or models as
balanced accuracy [20], which corrects for class frequency imbalances in datasets
by computing the accuracy on a per-class basis then averaging the per-class ac-

curacies. In the remainder of this chapter, we refer to “balanced accuracy” as
simply “accuracy.”
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Fig. 2. Scatter plot showing the median balanced accuracies of TPOT and a Random
Forest with 500 trees on the 150 benchmark datasets. Each dot represents the accuracies
on one benchmark dataset, and the diagonal line represents the line of parity (i.e.,
when both algorithms achieve the same accuracy score). Dots above the line represent
datasets where TPOT performed better than the Random Forest, and dots below the
line represent datasets where Random Forests performed better.



Shown in Figure 2, the average performance of TPOT and a Random For-
est with 500 trees is similar on most of the datasets. Overall, TPOT discovered
pipelines that perform statistically significantly better than a Random Forest on
21 benchmarks, significantly worse on 4 benchmarks, and had no statistically sig-
nificant difference on 125 benchmarks. (We determined statistical significance us-
ing a Wilcoxon rank-sum test, where we used a conservative Bonferroni-corrected
p-value threshold of < 0.000333 (01'205 ) for significance.) In Figure 3, we show the
distributions of accuracies on the 25 benchmarks that had significant differences,
where the benchmarks are sorted by the difference in median accuracy between
the two experiments.

Notably, the majority of TPOT’s improvements on the benchmarks are quite
large, with several ranging from 10%-60% median accuracy improvement over
a Random Forest analysis. In contrast, the 4 benchmarks where TPOT experi-
enced a degradation in median accuracy ranged from only 2-5% accuracy degra-
dation. In some cases, TPOT’s improvements were made by discovering useful
feature preprocessors that allow the models to better classify the data?, e.g.,
TPOT discovered that applying a RandomizedPCA feature preprocessor prior
to modeling the “Hill_valley” benchmarks allows Random Forests to classify the
dataset with near-perfect accuracy. In other cases, TPOT’s improvements were
made by applying a different model to the benchmark, e.g., TPOT discovered
that a k-nearest-neighbor classifier with & = 10 neighbors can classify the “par-
ity5” benchmark, whereas a Random Forest consistently achieved 0% accuracy
on the same benchmark.

When we compared TPOT to a version of TPOT that uses random search
(“TPOT Random” in Figure 3), we found that random search typically dis-
covered pipelines that achieve comparable accuracy to pipelines discovered by
TPOT, except in the “dis” benchmark where TPOT consistently discovered
better-performing pipelines. For 17 of the presented benchmarks, none of the
random search runs finished within 24 hours, which we indicated by leaving
the box plot blank in Figure 3. We found that random search often generated
needlessly complex pipelines for the benchmark problems, even when a simple
pipeline with a tuned model was sufficient to classify the benchmark problem.
Thus, even if random search can sometimes perform as well as TPOT in terms
of accuracy, performing a guided search for pipelines that achieve high accuracy
with as few pipeline operations as possible still offers considerable advantages in
terms of search run-time, model complexity, and model interpretability.

4 Conclusions and Future Work

We benchmarked the Tree-based Pipeline Optimization Tool (TPOT) v0.3 on
150 supervised classification datasets and found that it discovers machine learn-
ing pipelines that can outperform a basic machine learning analysis on several
benchmarks. In particular, we note that TPOT discovered these pipelines with-
out any domain knowledge nor human input. As such, TPOT shows considerable

2 Full list: https://gist.github.com /rhiever/578cc9c686fd873f46bca29406ddeld
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Fig. 3. Box plots showing the distribution of balanced accuracies for the 25 benchmarks
with a significant difference in median accuracy between TPOT and a Random Forest
with 500 trees. Each box plot represents 30 replicates, the inner line shows the median,
the notches represent the bootstrapped 95% confidence interval of the median, the ends
of the box represent the first and third quartiles, and the dots represent outliers.



promise in the automated machine learning (AutoML) domain and we will con-
tinue to refine TPOT until it consistently discovers human-competitive machine
learning pipelines. We discuss some of these future refinements below.

First, we will explore methods to provide sensible initialization [8] for genetic
programming (GP)-based AutoML systems such as TPOT. For example, we
can use meta-learning techniques to intelligently match pipeline configurations
that may work well on the particular problem being solved [6]. In brief, meta-
learning harnesses information from previous machine learning runs to predict
how well each pipeline configuration will work on a particular dataset. To place
datasets on a standard scale, meta-learning algorithms compute meta-features
from the datasets, such as dataset size, the number of features, and various
aspects about the features, which are then used to map dataset meta-features to
corresponding pipeline configurations that may work well on datasets with those
meta-features. Such an intelligent meta-learning algorithm is likely to improve
the TPOT sensible initialization process.

Furthermore, we will attempt to characterize the ideal “shape” of a machine
learning pipeline. In auto-sklearn, [5] imposed a short and fixed pipeline struc-
ture of a data preprocessor, a feature preprocessor, and a model. In another
GP-based AutoML system, [21] allowed the GP algorithm to design arbitrarily-
shaped pipelines and found that complex pipelines with several preprocessors
and models were useful for signal processing problems. Thus, it may be vital
to allow AutoML systems to design arbitrarily-shaped pipelines if they are to
achieve human-level competitiveness.

Finally, genetic programming (GP) optimization methods are typically crit-
icized for optimizing a large population of solutions, which can sometimes be
slow and wasteful for certain optimization problems. Instead, it is possible to
turn GP’s purported weakness into a strength by creating an ensemble out of
the GP populations. [2] explored one such population ensemble method previ-
ously with a standard GP algorithm and showed that it significantly improved
performance, and it is a natural extension to create ensembles out of TPOT’s
population of machine learning pipelines.

In conclusion, these experiments demonstrate that there is much to be gained
from taking a model-agnostic approach to machine learning and allowing the
machine to automatically discover what series of preprocessors and models work
best for a given problem domain. As such, AutoML stands to revolutionize data
science by automating some of the most tedious—yet most important—aspects
of machine learning.
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