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Learning is a never-ending process

Task 1 Task 2 Task 3

Models ModelsModelsModels Model

performance performance performance

Tasks come and go, but learning is forever
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Learn more effectively: less trial-and-error, less data



Task 1 Task 2 Task 3

ModelsModelsModels

performance performance performance

LearningLearning Learning

ModelsModelsModels
ModelsModelsModels

inductive bias
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Inductive bias: all assumptions added to the training data to learn effectively

If prior tasks are similar, we can transfer prior knowledge to new tasks

(if not it may actually harm learning)

Learning to learn

New Task

performance

ModelsModelsModels

Learning
prior beliefs
constraints

model parameters
representations

training data



Task 1 Task 2 Task 3

ModelsModelsModels

performance performance performance

LearningLearningLearners
LearningLearningLearners

LearningLearningLearners

ModelsModelsModels
ModelsModelsModels } meta-data
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Meta-learning
Collect meta-data about learning episodes and learn from them 

New Task

performance

ModelsModelsModels

meta-learner

base-learner

optimize

Meta-learner learns a (base-)learning algorithm, end-to-end 



Three approaches

New Task

meta-learner

ModelsModelsModels

Task 1 Task j

ModelsModelsModels

performance performance

LearningLearningLearningLearning

ModelsModelsModels

…

performance

1. Transfer prior knowledge about what generally works well 
2. Reason about model performance across tasks 
3. Start from models trained earlier on similar tasks

for increasingly similar tasks
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Learners Learners



1. Learning from prior evaluations
Configurations: settings that uniquely define the model  

        (algorithm, pipeline, neural architecture, hyper-parameters, …)

New Task

meta-learner

ModelsModelsModels

configurations

performances

Similar tasks suit similar configurations

Task 1 Task j

ModelsModelsModels

performance performance

LearningLearningLearningLearning

ModelsModelsModels

…

performance

λi

Pi,j
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Learners Learners
(hyperparameters)



Top-K recommendation
• Build a global (multi-objective) ranking, recommend the top-K 

• Requires fixed selection of candidate configurations (portfolio) 

• Can be used as a warm start for optimization techniques

Tasks

ModelsModelsModels

performance

LearningLearningLearning
1. λa 

2. λb 
3. λc 
4. λd 
5. λe 
6. …

New Task

meta-learner

ModelsModelsModels

performance

Global ranking

(task independent)

λa..k

warm 
start

Leite et al. 2012
Abdulrahman et al. 2018

}(discrete)

(multi-objective)

Pi,j
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λi

https://link.springer.com/chapter/10.1007/978-3-642-31537-4_10
https://link.springer.com/article/10.1007/s10994-017-5687-8


• What if prior configurations are not optimal? 

• Per task, fit a differentiable plugin estimator on all evaluated configurations 

• Do gradient descent to find optimized configurations, recommend those

Tasks

ModelsModelsModels

performance

LearningLearningLearning New Task

meta-learner

ModelsModelsModels

performance

Warm-starting with plugin estimators

warm 
start

λ*i

per task:

task 1: λ*1 
task 2: λ*2 
task 3: λ*3 
…

Wistuba et al. 2015

λi

}
Pi,j

!8

https://ieeexplore.ieee.org/abstract/document/7344817/


• Functional ANOVA: select hyperparameters that cause variance in the evaluations1 

• Tunability: improvement from tuning a hyperparameter  vs. using a good default2 

• Search space pruning: exclude regions yielding bad performance on similar tasks3

Tasks

ModelsModelsModels

performance

LearningLearningLearning

}
New Task

meta-learner

ModelsModelsModels

performance

Configuration space design

importance

1 van Rijn & Hutter 2018

H
P1

H
P2

H
P3

H
P4

constraints 
priors

2 Probst et al. 2018

Pi,j

3 Wistuba et al. 2015

P

λ1!9

λi

λ2

https://dl.acm.org/citation.cfm?id=3220058
https://arxiv.org/abs/1802.09596
https://link.springer.com/chapter/10.1007/978-3-319-23525-7_7


• Task are similar if observed relative performance of configurations is similar 

• Tournament-style selection, warm-start with overall best configurations λbest  

• Next candidate λc : the one that beats current λbest on similar tasks (from portfolio)

Tasks

ModelsModelsModels

performance

LearningLearningLearning

}
New Task

meta-learner

ModelsModelsModels

performance

Active testing
Leite et al. 2012

λc

Relative landmark on λa,λb,task tj:

Select λc  >RL λbest on similar tasks 
Sim(tj,tnew) = Corr([RLa,b,j],[RLa,b,new]) 

(discrete)

Pi,j
Update:
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λi

https://link.springer.com/chapter/10.1007/978-3-642-31537-4_10


• Learns how to learn within a single task (short-term memory) 

• Surrogate model: probabilistic regression model of configuration performance 

• Can we transfer what we learned to new tasks (long term memory)?

Task

ModelsModelsModels

performance

LearningLearningLearning

Bayesian optimization (refresh)

Surrogate model

Acquisition function

λ ∈ Λ 

P

λi

Rasmussen 2014
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https://link.springer.com/chapter/10.1007/978-3-540-28650-9_4


• If task j is similar to the new task, its surrogate model Sj  will do well 

• Sum up all Sj  predictions, weighted by task similarity (relative landmarks)1  

• Build combined Gaussian process, weighted by current performance on new task2

Tasks

ModelsModelsModels

performance

LearningLearningLearning New Task

meta-learner

ModelsModelsModels

performance

per task tj:

Pi,j
}

Surrogate model transfer
1 Wistuba et al. 2018

λi

P
Sj

2 Feurer et al. 2018

S = ∑ wj Sj

+
+

S1

S2

S3
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λi

https://link.springer.com/article/10.1007/s10994-017-5684-y
https://arxiv.org/abs/1802.02219


• Bayesian linear regression (BLR) surrogate model on every task 

• Learn a suitable basis expansion ϕz(λ), joint representation for all tasks 

• Scales linearly in # observations, transfers info on configuration space

Tasks

ModelsModelsModels

performance

LearningLearningLearning New Task

meta-learner

ModelsModelsModels

performance

}

Warm-started multi-task learning
Perrone et al. 2018

λi

P
BLR 

surrogate

(λi,Pi,j)

φz(λ)i

P

warm-start (pre-train)

λi

Bayesian optimization

φz(λ)
BLR hyperparameters

Pi,j
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λi

https://arxiv.org/abs/1712.02902


• Multi-task Gaussian processes: train surrogate model on t tasks simultaneously1 

• If tasks are similar: transfers useful info  

• Not very scalable  

• Bayesian Neural Networks as surrogate model2 

• Multi-task, more scalable 

• Stacking Gaussian Process regressors (Google Vizier)3 

• Sequential tasks, each similar to the previous one 

• Transfers a prior based on residuals of previous GP

Multi-task Bayesian optimization
1 Swersky et al. 2013

Independent GP predictions Multi-task GP predictions

2 Springenberg et al. 2016
3 Golovin et al. 2017
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http://papers.nips.cc/paper/5086-multi-task-bayesian-optimization
http://papers.nips.cc/paper/6116-bayesian-optimization-with-robust-bayesian-neural-networks
https://dl.acm.org/citation.cfm?id=3098043


• Transfer learning with multi-armed bandits1 

• View every task as an arm, learn to `pull` observations from the most similar tasks 

• Reward: accuracy of configurations recommended based on these observations 

• Transfer learning curves2,3 

• Learn a partial learning curve on a new task, find best matching earlier curves 

• Predict the most promising configurations based on earlier curves

Other techniques
1 Ramachandran et al. 2018

3 van Rijn et al. 2015
2 Leite et al. 2005
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2. Reason about model performance across tasks
Meta-features: measurable properties of the tasks  
        (number of instances and features, class imbalance, feature skewness,…)

configurations

performances

similar mj ?Task 1 Task N

ModelsModelsModels

performance performance

LearningLearningLearning
LearningLearningLearning

ModelsModelsModels

… meta-features New Task

meta-learner

ModelsModelsModels

performance

mj

Pi,j
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λi



• Hand-crafted (interpretable) meta-features1  

• Number of instances, features, classes, missing values, outliers,… 

• Statistical: skewness, kurtosis, correlation, covariance, sparsity, variance,… 

• Information-theoretic: class entropy, mutual information, noise-signal ratio,… 

• Model-based: properties of simple models trained on the task 

• Landmarkers: performance of fast algorithms trained on the task 

• Domain specific task properties 

• Learning a joint task representation 

• Deep metric learning: learn a representation hmf using a ground truth distance2 

• With Siamese Network: 

• Similar task, similar representation

Meta-features
1 Vanschoren 2018

2 Kim et al. 2017
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https://arxiv.org/abs/1810.03548
https://arxiv.org/abs/1609.09156


• Find k most similar tasks, warm-start search with best 𝛳i    

• Genetic hyperparameter search 1 

• Auto-sklearn: Bayesian optimization (SMAC) 2 

• Scales well to high-dimensional configuration spaces

Tasks

ModelsModelsModels

performance

LearningLearningLearning

New Task

meta-learner

ModelsModelsModels

performance
Pi,j

}

Warm-starting from similar tasks

1 Gomes et al. 2012, Reif et al. 2012

λ1..k

mj

best λi  on 
similar tasks

2 Feurer et al. 2015

Genetic optimization

Bayesian optimization
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λi

λ

P
λ1

λ3

λ2

λ4

https://www.sciencedirect.com/science/article/pii/S0925231211004036
https://link.springer.com/article/10.1007/s10044-012-0280-z
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning


• Collaborative filtering: configurations λi are `rated’ by tasks tj 

• Probabilistic matrix factorization 

• Learns a latent representation for tasks and configurations 

• Returns probabilistic predictions for Bayesian optimization 

• Use meta-features to warm-start on new task

Tasks

ModelsModelsModels

performance

LearningLearningLearning

New Task

meta-learner

ModelsModelsModels

performance
Pi,j

}

Warm-starting from similar tasks

λ1..k

mj

Fusi et al. 2017

Pi,j

λi

TL

λL

tj

tnew warm-started  
with λ1..k

. . .. .   .  .. .  . . . 

P
λiλLi

P

p(P|λLi)

latent representation(discrete)
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λi

http://papers.nips.cc/paper/7595-probabilistic-matrix-factorization-for-automated-machine-learning


• Train a task-independent surrogate model with meta-features in inputs  

• SCOT: Predict ranking of λi  with surrogate ranking model + mj. 1 

• Predict Pi,j with multilayer Perceptron surrogates + mj. 2 

• Build joint GP surrogate model on most similar  (                   ) tasks. 3  

• Scalability is often an issue

Tasks

ModelsModelsModels

performance

LearningLearningLearning

New Task

meta-learner

ModelsModelsModels

performance
Pi,j

}

Global surrogate models

mj

1 Bardenet et al. 2013
2 Schilling et al. 2015

mj ✖   λi

P

3 Yogatama et al. 2014

2
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λi

task1 task2

joint

http://www.jmlr.org/proceedings/papers/v28/bardenet13.pdf
https://link.springer.com/chapter/10.1007/978-3-319-23525-7_6
http://www.jmlr.org/proceedings/papers/v33/yogatama14.pdf


• Learn direct mapping between meta-features and Pi,j 

• Zero-shot meta-models: predict best λi  given meta-features 1 

• Ranking models: return ranking λ1..k  2 

• Predict which algorithms / configurations to consider / tune 3 

• Predict performance / runtime for given 𝛳i  and task 4 

• Can be integrated in larger AutoML systems: warm start, guide search,…

meta-learner

Meta-models

λbest

1 Brazdil et al. 2009, Lemke et al. 2015
2 Sun and Pfahringer 2013, Pinto et al. 2017

meta-learner λ1..k

mj

mj

meta-learner

Pijmj, λi

3 Sanders and C. Giraud-Carrier 2017

meta-learner

Λmj

4 Yang et al. 2018
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https://books.google.ca/books?hl=en&lr=&id=-Gsi_cxZGpcC&oi=fnd&pg=PA1&dq=Metalearning:+Applications+to+Data+Mining.&ots=wj0FrYpzNf&sig=60R5Bp5mhf1z5xncfukBDwcvA2w
https://link.springer.com/article/10.1007/s10462-013-9406-y
https://link.springer.com/article/10.1007/s10994-013-5387-y
https://arxiv.org/abs/1706.09367
https://ieeexplore.ieee.org/abstract/document/8215600/
https://arxiv.org/abs/1808.03233


Learning Pipelines
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• Compositionality: the learning process can be broken down into smaller tasks 

• Easier to learn, more transferable, more robust 

• Pipelines are one way of doing this, but how to control the search space? 

• Select a fixed set of possible pipelines. Often works well (less overfitting) 1 

• Impose a fixed structure on the pipeline 2 

• (Hierarchical) Task Planning 3 

• Break down into smaller tasks 

• Meta-learning: 

• Mostly warm-starting

1 Fusi et al. 2017

3 Mohr et al. 2018

2 Feurer et al. 2015

http://papers.nips.cc/paper/7595-probabilistic-matrix-factorization-for-automated-machine-learning
https://link.springer.com/article/10.1007/s10994-018-5735-z
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning


Evolving pipelines
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3 De Sa et al. 2017

1 Olson et al. 2017
2 Gijsbers et al. 2018

• Start from simple pipelines  

• Evolve more complex ones if needed 

• Reuse pipelines that do specific things  

• Mechanisms: 

• Cross-over: reuse partial pipelines 

• Mutation: change structure, tuning 

• Approaches: 

• TPOT: Tree-based pipelines1 

• GAMA: asynchronous evolution2 

• RECIPE: grammar-based3 

• Meta-learning: 

• Largely unexplored 

• Warm-starting, meta-models

https://link.springer.com/chapter/10.1007/978-3-319-55696-3_16
https://dl.acm.org/citation.cfm?id=2908918
https://github.com/PGijsbers/gama


Learning to learn through self-play
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• Build pipelines by selecting among actions 

• insert, delete, replace pipeline parts 

• Neural network (LSTM) receives task meta-features, pipelines and evaluations 

• Predict pipeline performance and action probabilities 

• Monte Carlo Tree Search builds pipelines based on probabilities 

• Runs multiple simulations to search for a better pipeline

Drori et al 2017

New Task

meta-learner

ModelsModelsModels

performance

self-play
mj

λi

https://www.cs.columbia.edu/~idrori/AlphaD3M.pdf


3. Learning from trained models

configurations

performances

Task 1 Task N

ModelsModelsModels

performance performance

LearningLearningLearning
LearningLearningLearning

ModelsModelsModels

… New Task

meta-learner

ModelsModelsModels

performance

model parameters

Models trained on similar tasks 
        (model parameters, features,…)

intrinsically (very) similar

(e.g. shared representation)

𝛳k

Pi,j

!25

λi



Transfer Learning
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Source 
tasks

ModelsModelsModels

performance

LearningLearningLearning

Target  
task

meta-learner

performancePi,j
!26

ModelsModelsModels

• Select source tasks, transfer trained models to similar target task 1 

• Use as starting point for tuning, or freeze certain aspects (e.g. structure) 

• Bayesian networks: start structure search from prior model 2 

• Reinforcement learning: start policy search from prior policy 3

1 Thrun and Pratt 1998

Bayesian Network transfer

Reinforcement learning: 2D to 3D mountain car

3 Taylor and Stone 2009

2 Niculescu-Mizil and Caruana 2005

𝛳k

λi

https://link.springer.com/chapter/10.1007/978-1-4615-5529-2_1
http://www.jmlr.org/papers/v10/taylor09a.html
http://people.ee.duke.edu/~lcarin/MizilCaruana.pdf


Transfer features, initializations
• For neural networks, both structure and weights can be transferred   

• Features and initializations learned from: 

• Large image datasets (e.g. ImageNet) 1  

• Large text corpora (e.g. Wikipedia) 2 

• Fails if tasks are not similar enough 3

frozen new

pre-trained new

frozen  

Source 
tasks

ModelsModels

performance

LearningLearningLearning Feature extraction: 

remove last layers, use output as features

if task is quite different, remove more layers

End-to-end tuning: 

train from initialized weights

Fine-tuning: 

unfreeze last layers, tune on new task

sm
all 

tar
ge

t ta
sk

large

similar

large


different

filters

1 Razavian et al. 2014

3 Yosinski et al. 2014

2 Mikolov et al. 2013

new

pre-trained 
convnet
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https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W15/html/Razavian_CNN_Features_Off-the-Shelf_2014_CVPR_paper.html
https://arxiv.org/abs/1411.1792
http://papers.nips.cc/paper/5021-distributed-representations-of-words-andphrases


Learning to learn by gradient descent
• Our brains probably don’t do backprop, replace it with: 

• Simple parametric (bio-inspired) rule to update weights 1 

• Single-layer neural network to learn weight updates 2 

• Learn parameters across tasks, by gradient descent (meta-gradient)

1 Bengio et al. 1995
2 Runarsson and Jonsson 2000

learning rate

presynaptic activity

reinforcing signal

Tasks

meta-learner

performance

ModelsModelsModels
Δ 𝛳i = 𝜂 (                 )

meta-gradient

weights λi!28

learning rate

learn λi

gradient 
descent

λi

λinit

learner

Bengio et al.

Runarsson and Jonsson

Δ 𝛳i

https://link.springer.com/article/10.1007/BF02279935
https://ieeexplore.ieee.org/abstract/document/886220/


Learning to learn gradient descent
2 Andrychowicz et al. 2016

1 Hochreiter 2001

• Replace backprop with a recurrent neural net (LSTM)1, not so scalable 

• Use a coordinatewise LSTM [m] for scalability/flexibility (cfr. ADAM, RMSprop) 2 

• Optimizee: receives weight update gt  from optimizer 

• Optimizer: receives gradient estimate ∇t  from optimizee  

• Learns how to do gradient descent across tasks

hidden state

optimisee 
weights

New task

Model

meta-
model

by gradient descent

!29LSTM parameters shared for all 𝛳 

Single 

network!

http://papers.nips.cc/paper/6460-learning-to-learn-by-gradient-descent-by-gradient-descent
https://link.springer.com/10.1007/3-540-44668-0_13


Few-shot learning
• Learn how to learn from few examples (given similar tasks) 

• Meta-learner must learn how to train a base-learner based on prior experience 

• Parameterize base-learner model and learn the parameters 𝛳i

Ttrain

Image: Hugo Larochelle 

meta-model

Model M

𝛳i+1

Tj

Ttest

Ttest

𝛳i

Pi,j

λk
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Pi+1,test

X_test

y_test

y_test

X_train y_train

Cost(θi) =
1

|Ttest | ∑
t∈Ttest

loss(θi, t) 1-shot, 5-class:

new classes!



Few-shot learning: approaches
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• Existing algorithm as meta-learner: 

• LSTM + gradient descent 

• Learn 𝛳init + gradient descent 

• kNN-like: Memory + similarity 

• Learn embedding + classifier 

• … 

• Black-box meta-learner 

• Neural Turing machine (with memory) 

• Neural attentive learner 

• …

Cost(θi) =
1

|Ttest | ∑
t∈Ttest

loss(θi, t) Santoro et al. 2016

Mishra et al. 2018

meta-model

Model M

𝛳i+1

Tj Ttest

𝛳i

Pi,j

λk

Pi+1,test

 Ravi and Larochelle 2017

Finn et al. 2017

Vinyals et al. 2016

Snell et al. 2017

https://arxiv.org/abs/1605.06065
https://openreview.net/forum?id=B1DmUzWAW
https://openreview.net/forum?id=rJY0-Kcll&noteId=ryq49XyLg
https://arxiv.org/abs/1703.03400
http://papers.nips.cc/paper/6385-matching-networks-for-one-shot-learning
http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning


LSTM meta-learner + gradient descent

 Ravi and Larochelle 2017

!32 Train   Test

Cost(θT) =
1

|Ttest | ∑
t∈Ttest

loss(θT, t)
LSTM LSTM LSTM LSTM

M M M M M

• Gradient descent update 𝛳t is similar to LSTM cell state update ct 

• Hence, training a meta-learner LSTM yields an update rule for training M 

• Start from initial 𝛳0, train model on first batch, get gradient and loss update 

• Predict 𝛳t+1 , continue to t=T, get cost, backpropagate to learn LSTM weights, optimal 𝛳0  

forget

input

https://openreview.net/forum?id=rJY0-Kcll&noteId=ryq49XyLg


Model-agnostic meta-learning

• Quickly learn new skills by learning a model initialization that generalizes better 
to similar tasks 

• Current initialization 𝛳  

• On K examples/task, evaluate  

• Update weights for  

• Update 𝛳 to minimize sum of per-task losses 

• Repeat 

• More resilient to overfitting 

• Generalizes better than LSTM approaches  

• Universality: no theoretical downsides in terms of expressivity when compared 
to alternative meta-learning models. 

• REPTILE: do SGD for k steps in one task, only then update initialization weights3

1 Finn et al. 2017

!33

∇θ LTi
( fθ)

θ1, θ2, θ3

2 Finn et al. 2018
3 Nichol et al. 2018

https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/1710.11622
https://arxiv.org/abs/1803.02999


1-shot learning with Matching networks

Vinyals et al. 2016
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• Don’t learn model parameters, use non-parameters model (like kNN) 

• Choose an embedding network f and g (possibly equal) 

• Choose an attention kernel                 , e.g. softmax over cosine distance  

• Train complete network in minibatches with few examples per task

a( ̂x, xi)

𝛳 = {VGG, Inception,…}

http://papers.nips.cc/paper/6385-matching-networks-for-one-shot-learning


Prototypical networks
Snell et al. 2017

• Train a “prototype extractor” network 

• Map examples to p-dimensional embedding so examples of a given class are close together 

• Calculate a prototype (mean vector) for every class 

• Map test instances to the same embedding, use softmax over distance to prototype 

• Using more classes during meta-training works better! 
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Ren et al. 2018

http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning
https://arxiv.org/abs/1803.00676


Learning to reinforcement learn

!36

• Also works for few-shot learning 3 

• Condition on observation + upcoming demonstration 

• You don’t know what someone is trying to teach you, but 
you prepare for the lesson

 1 Duan et al. 2017
 2 Wang et al. 2017
3  Duan et al. 2017

Environments

meta-RL 
algorithm

performance

policy 𝝅θ

fast RL  
agent

!36

policy 𝝅θ

Similar env.

performance

• Humans often learn to play new games much faster than RL techniques do 

• Reinforcement learning is very suited for learning-to-learn: 

• Build a learner, then use performance as that learner as a reward 

• Learning to reinforcement learn 1,2 

• Use RNN-based deep RL to train a recurrent network on many tasks 

• Learns to implement a ‘fast’ RL agent, encoded in its weights

impl

https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1611.05763
http://papers.nips.cc/paper/6709-one-shot-imitation-learning


Learning to learn more tasks 
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• Active learning 

• Deep network (learns representation) + policy network 

• Receives state and reward, says which points to query next 

• Density estimation 

• Learn distribution over small set of images, can generate new ones 

• Uses a MAML-based few-shot learner 

• Matrix factorization 

• Deep learning architecture that makes recommendations 

• Meta-learner learns how to adjust biases for each user (task) 

• Replace hand-crafted algorithms by learned ones. 

• Look at problems through a meta-learning lens!

Pang et al. 2018

Reed et al. 2017

Vartak et al. 2017

https://arxiv.org/abs/1806.04798
https://arxiv.org/abs/1710.10304
http://papers.nips.cc/paper/7266-a-meta-learning-perspective


Meta-data sharing
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import	openml	as	oml	
from	sklearn	import	tree	

task	=	oml.tasks.get_task(14951)	
clf	=	tree.ExtraTreeClassifier()	
flow	=	oml.flows.sklearn_to_flow(clf)	
run	=	oml.runs.run_flow_on_task(task,	flow)	
myrun	=	run.publish()

run locally, share globally

Vanschoren et al. 2014

models built  
by humans

models built  
by AutoML bots

• OK, but how do I get large amounts of meta-data for meta-learning? 

• OpenML.org 

• Thousands of uniform datasets 

• 100+ meta-features 

• Millions of evaluated runs 

• Same splits, 30+ metrics 

• Traces, models  (opt) 

• APIs in Python, R, Java,…  
• Publish your own runs  

• Never ending learning 
• Benchmarks 

building a shared memory

Open positions!

Scientific programmer

Teaching PhD

https://dl.acm.org/citation.cfm?id=2641198
http://OpenML.org


Towards human-like learning to learn
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• Learning-to-learn gives humans a significant advantage  

• Learning how to learn any task empowers us far beyond knowing 
how to learn specific tasks.  

• It is a universal aspect of life, and how it evolves 

• Very exciting field with many unexplored possibilities 

• Many aspects not understood (e.g. task similarity), need more 
experiments. 

• Challenge:  

• Build learners that never stop learning, that learn from each other 

• Build a global memory for learning systems to learn from 

• Let them explore by themselves, active learning



Thank you!

Questions Questions QuestionsQuestions Questions

special thanks to 
Pavel Brazdil, Matthias Feurer, Frank Hutter, Erin Grant,                       
Hugo Larochelle, Raghu Rajan, Jan van Rijn, Jane Wang

more to learn 
http://www.automl.org/book/ 

Chapter 2: Meta-Learning 

Merci!

!40

http://www.automl.org/book/

