NeurIPS 2018 Tutorial on Automatic Machine Learning

<u>automl.org/events</u> -> AutoML Tutorial -> Slides

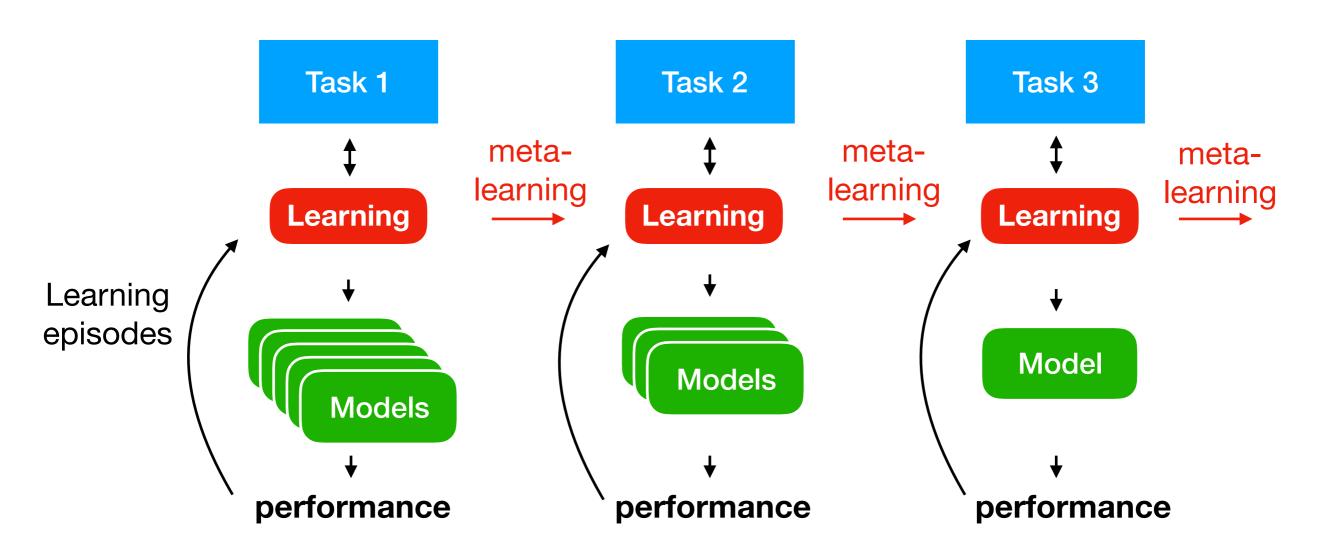
Frank Hutter University of Freiburg <u>fh@cs.uni-freiburg.de</u>

1

Joaquin Vanschoren Eindhoven University of Technology <u>j.vanschoren@tue.nl</u> <u>\$ @joavanschoren</u>

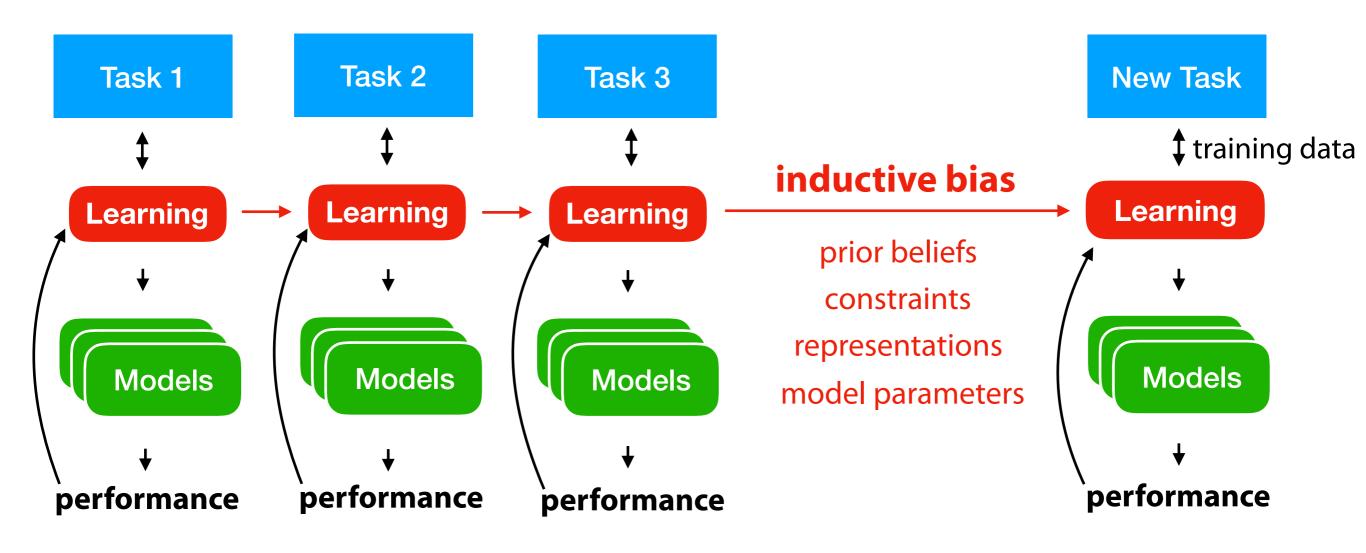
Learning is a never-ending process

Tasks come and go, but learning is forever Learn more effectively: less trial-and-error, less data



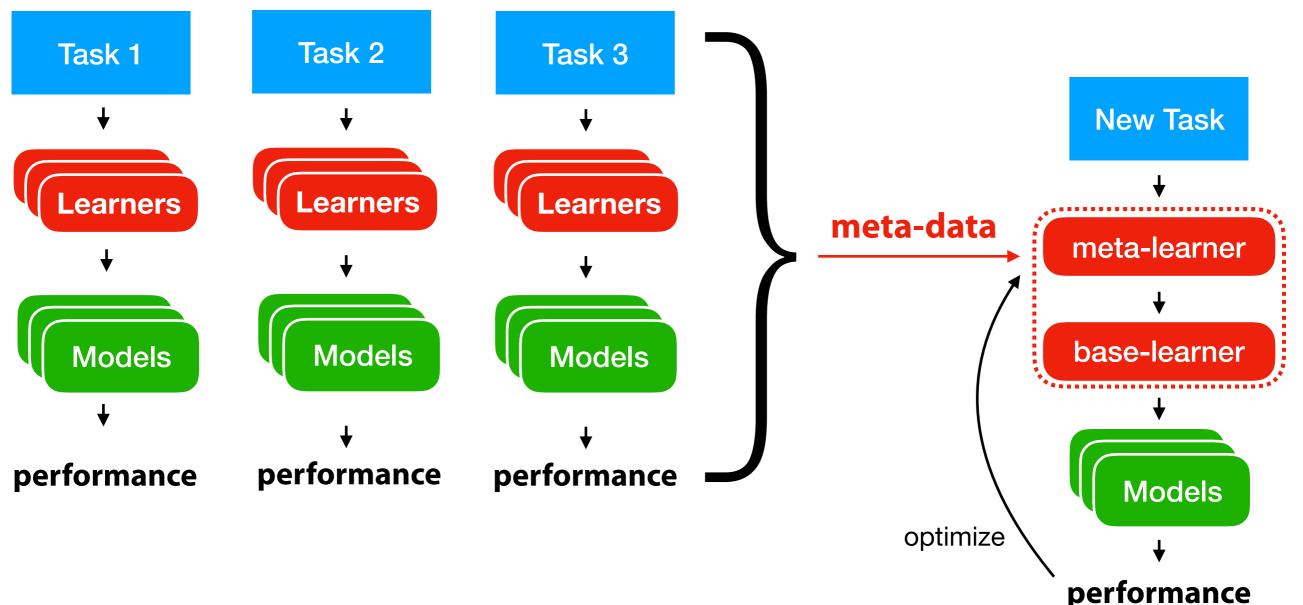
Learning to learn

Inductive bias: all assumptions added to the training data to learn effectively If prior tasks are *similar*, we can *transfer* prior knowledge to new tasks (if not it may actually harm learning)



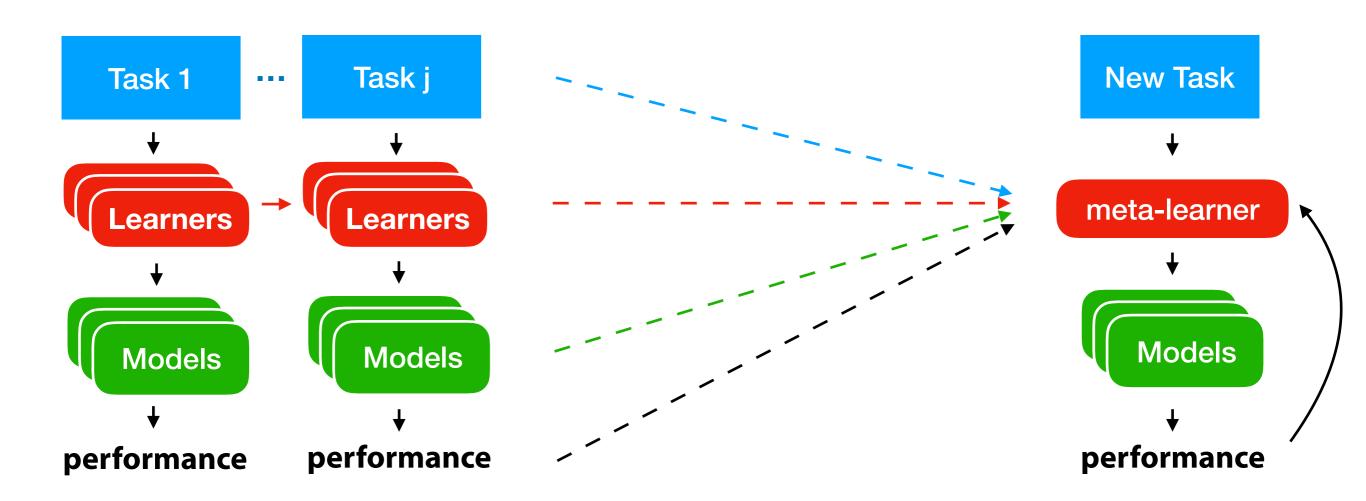
Meta-learning

Collect meta-data about learning episodes and learn from them Meta-learner *learns* a (base-)learning algorithm, *end-to-end*



Three approaches for increasingly similar tasks

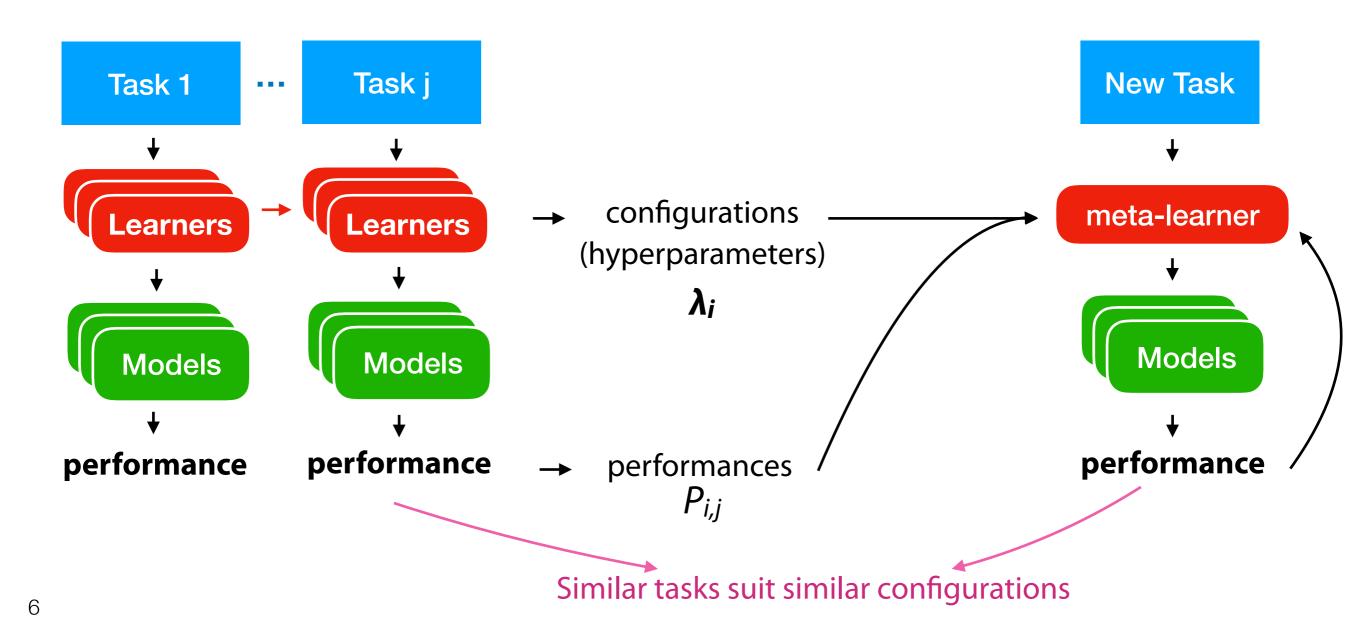
- 1. Transfer prior knowledge about what generally works well
- 2. Reason about model performance across tasks
- 3. Start from models trained earlier on similar tasks



1. Learning from prior evaluations

Configurations: settings that uniquely define the model

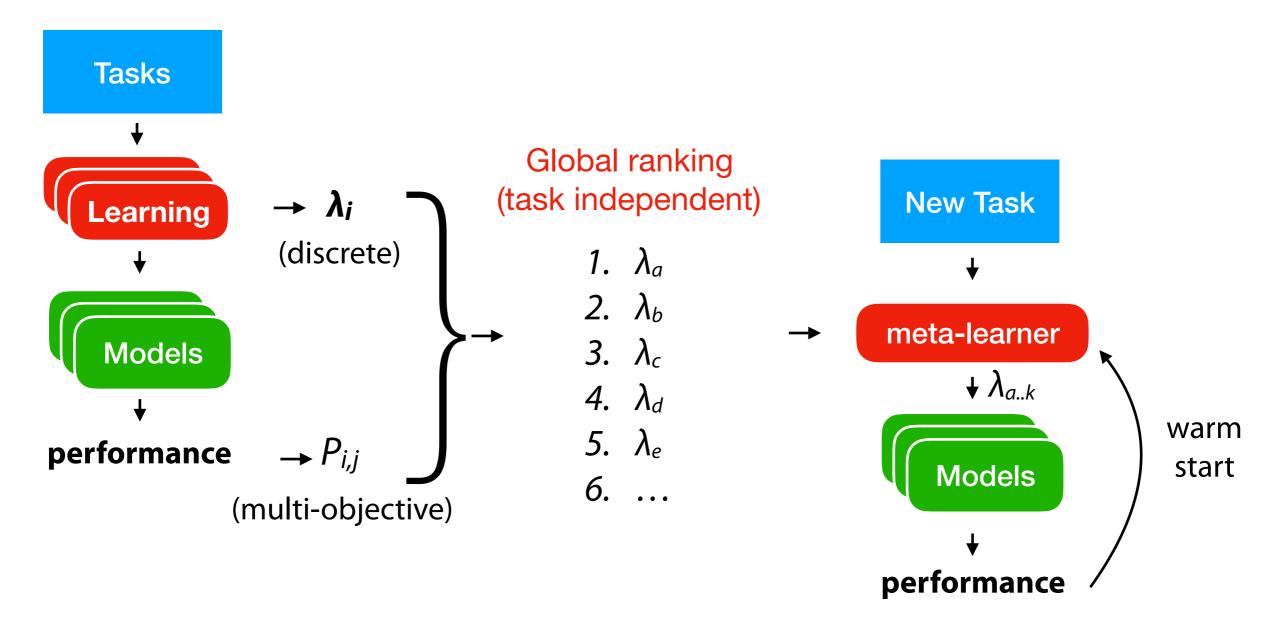
(algorithm, pipeline, neural architecture, hyper-parameters, ...)



<u>Leite et al. 2012</u> <u>Abdulrahman et al. 2018</u>

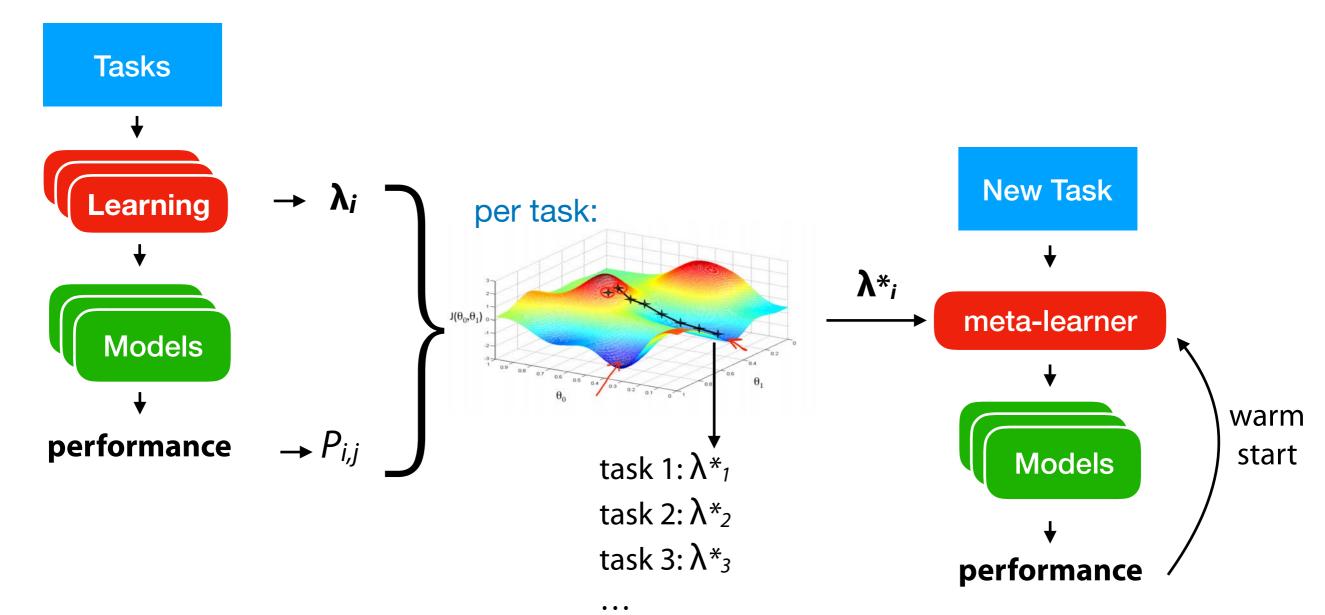
Top-K recommendation

- Build a global (multi-objective) ranking, recommend the top-K
- Requires fixed selection of candidate configurations (portfolio)
- Can be used as a warm start for optimization techniques



Warm-starting with plugin estimators

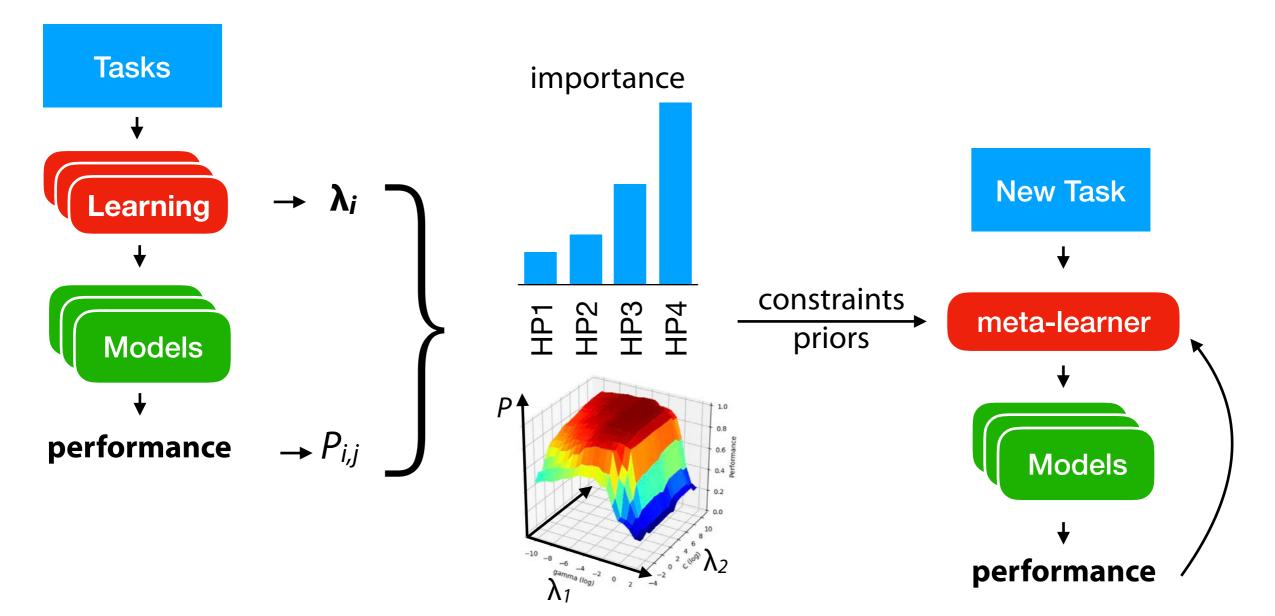
- What if prior configurations are not optimal?
- Per task, fit a differentiable plugin estimator on all evaluated configurations
- Do gradient descent to find optimized configurations, recommend those



Configuration space design

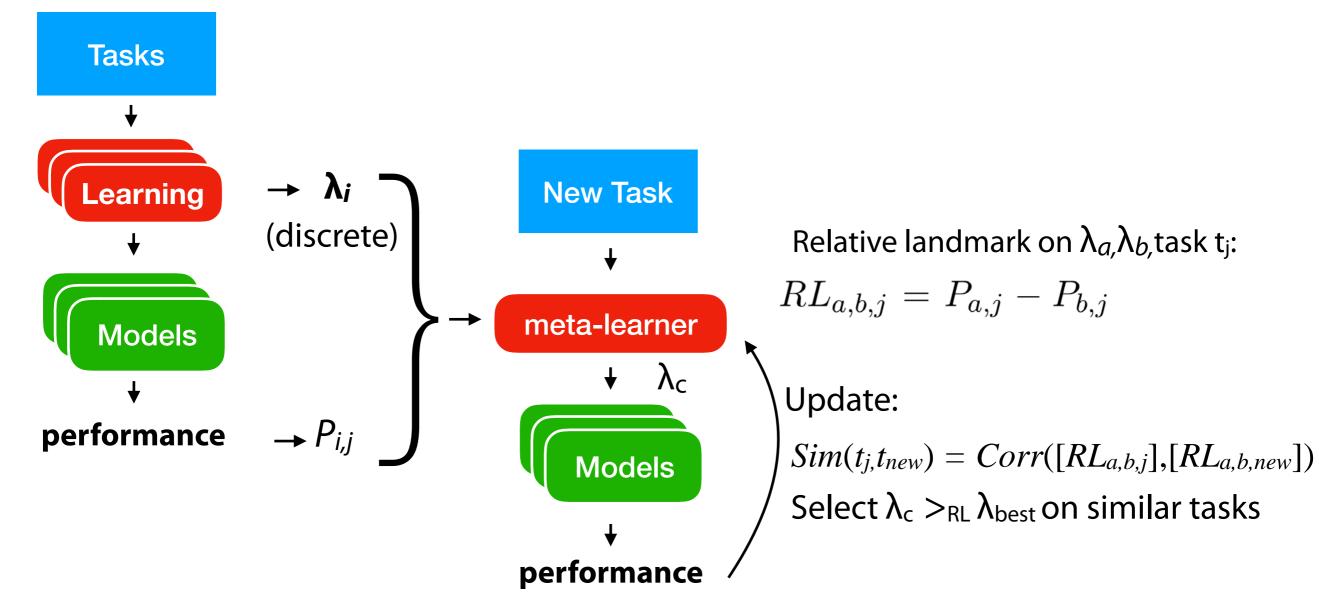
¹ <u>van Rijn & Hutter 2018</u> ² <u>Probst et al. 2018</u> ³ <u>Wistuba et al. 2015</u>

- Functional ANOVA: select hyperparameters that cause variance in the evaluations¹
- **Tunability**: improvement from tuning a hyperparameter vs. using a good default²
- Search space pruning: exclude regions yielding bad performance on similar tasks³



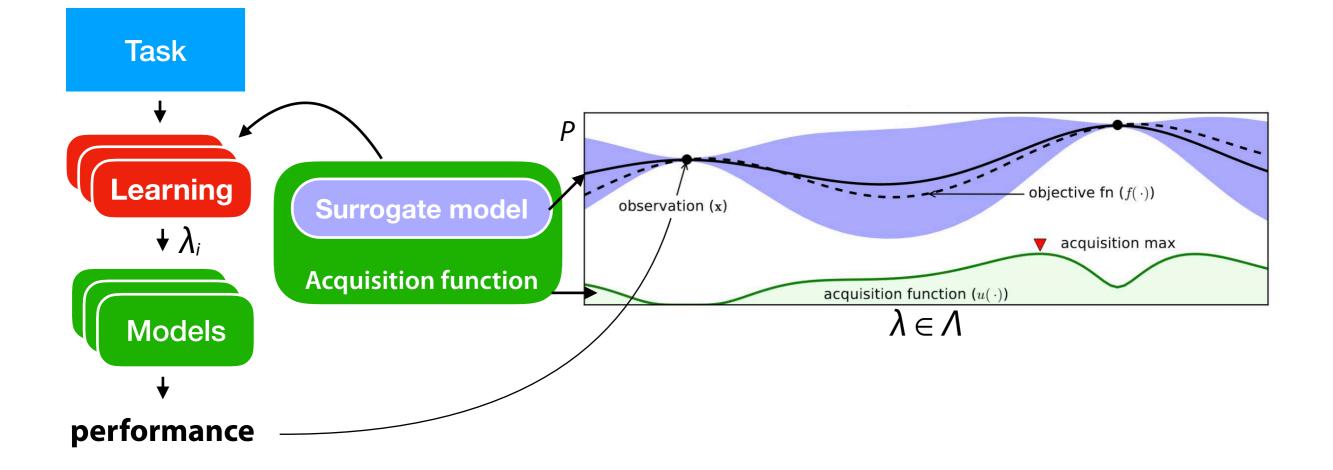
Active testing

- Task are similar if observed relative performance of configurations is similar
- Tournament-style selection, warm-start with overall best configurations λ_{best}
- Next candidate λ_c : the one that beats current λ_{best} on similar tasks (from portfolio)



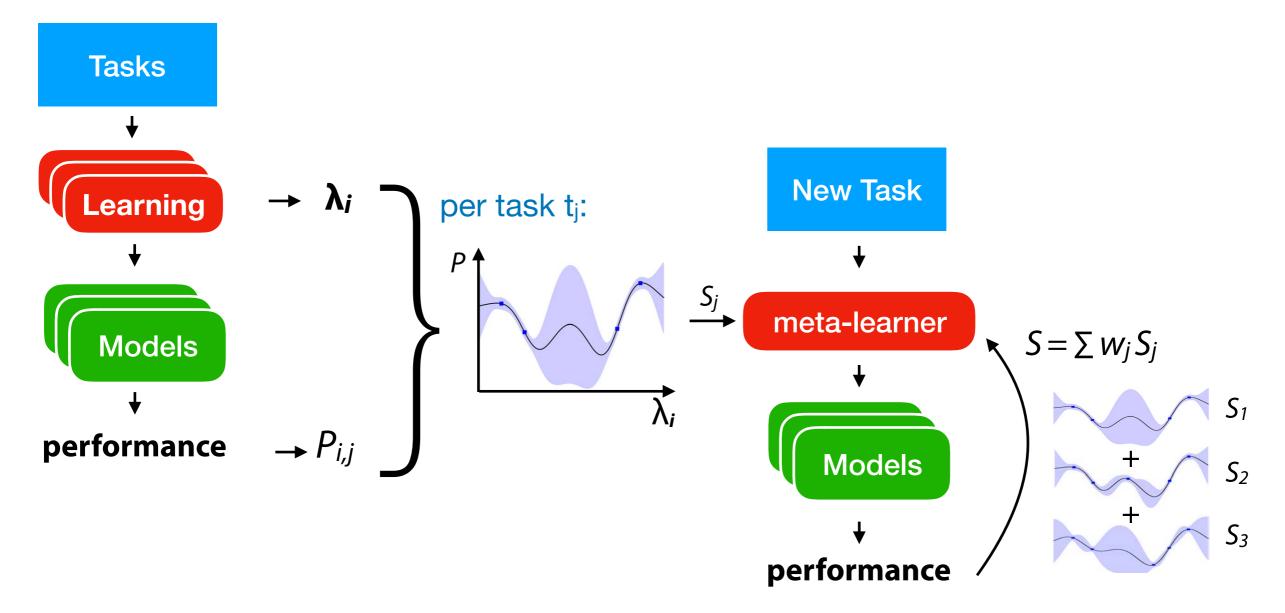
Bayesian optimization (refresh)

- Learns how to learn within a single task (short-term memory)
- Surrogate model: *probabilistic* regression model of configuration performance
- Can we transfer what we learned to *new* tasks (long term memory)?



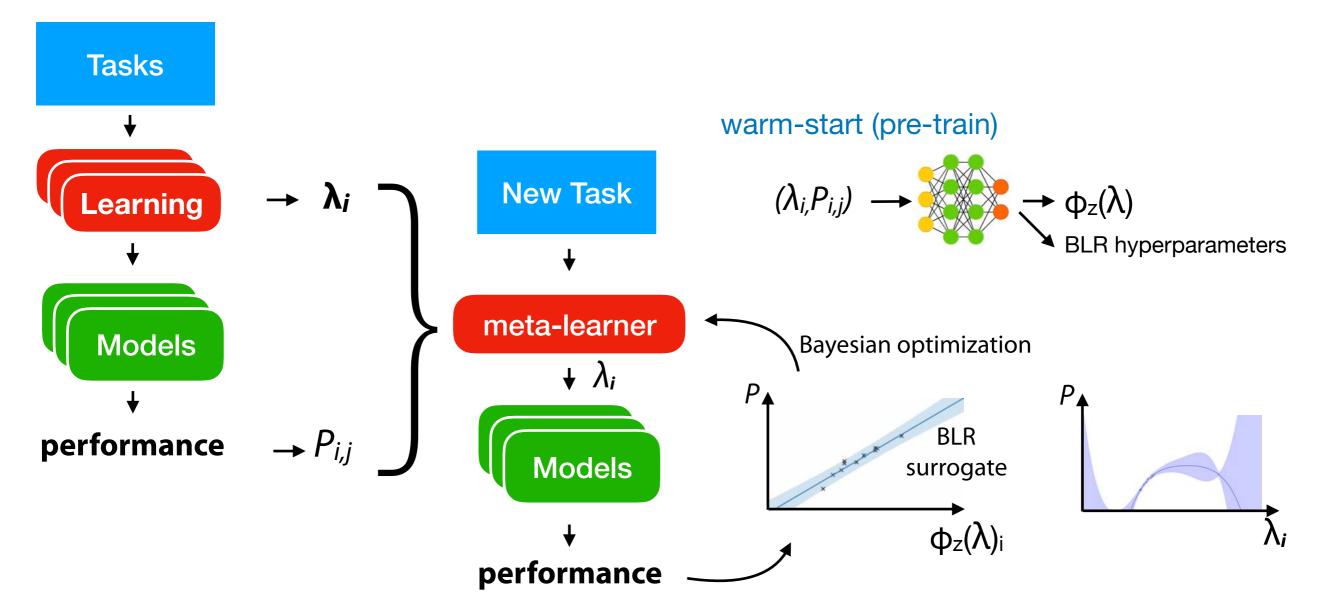
Surrogate model transfer

- If task j is *similar* to the new task, its surrogate model S_j will do well
- Sum up all S_j predictions, weighted by task similarity (relative landmarks)¹
- Build combined Gaussian process, weighted by current performance on new task²



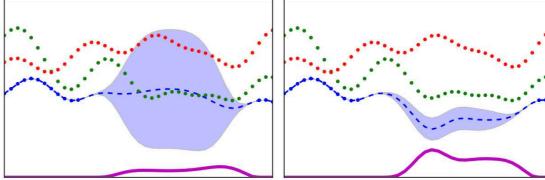
Warm-started multi-task learning

- Bayesian linear regression (BLR) surrogate model on every task
- Learn a suitable basis expansion $\phi_z(\lambda)$, joint representation for all tasks
- Scales linearly in # observations, transfers info on configuration space



² Springenberg et al. 2016 **Multi-task Bayesian optimization**

- Multi-task Gaussian processes: train surrogate model on t tasks simultaneously¹
 - If tasks are similar: transfers useful info
 - Not very scalable •



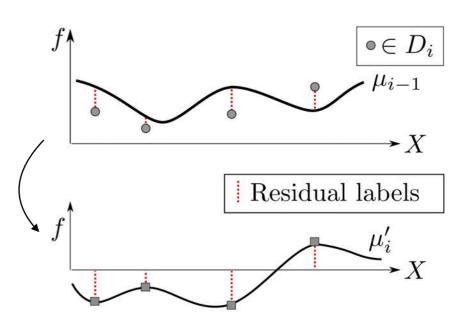
Independent GP predictions

Multi-task GP predictions

¹ <u>Swersky et al. 2013</u>

³ <u>Golovin et al. 2017</u>

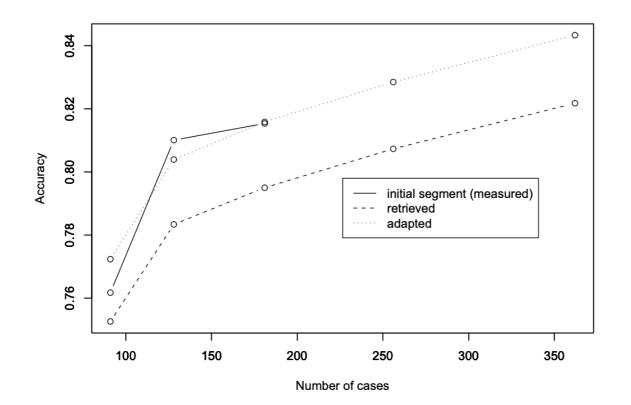
- **Bayesian Neural Networks** as surrogate model²
 - Multi-task, more scalable
- Stacking Gaussian Process regressors (Google Vizier)³
 - Sequential tasks, each similar to the previous one
 - Transfers a prior based on residuals of previous GP



¹ Ramachandran et al. 2018 ² Leite et al. 2005 ³ van Rijn et al. 2015

Other techniques

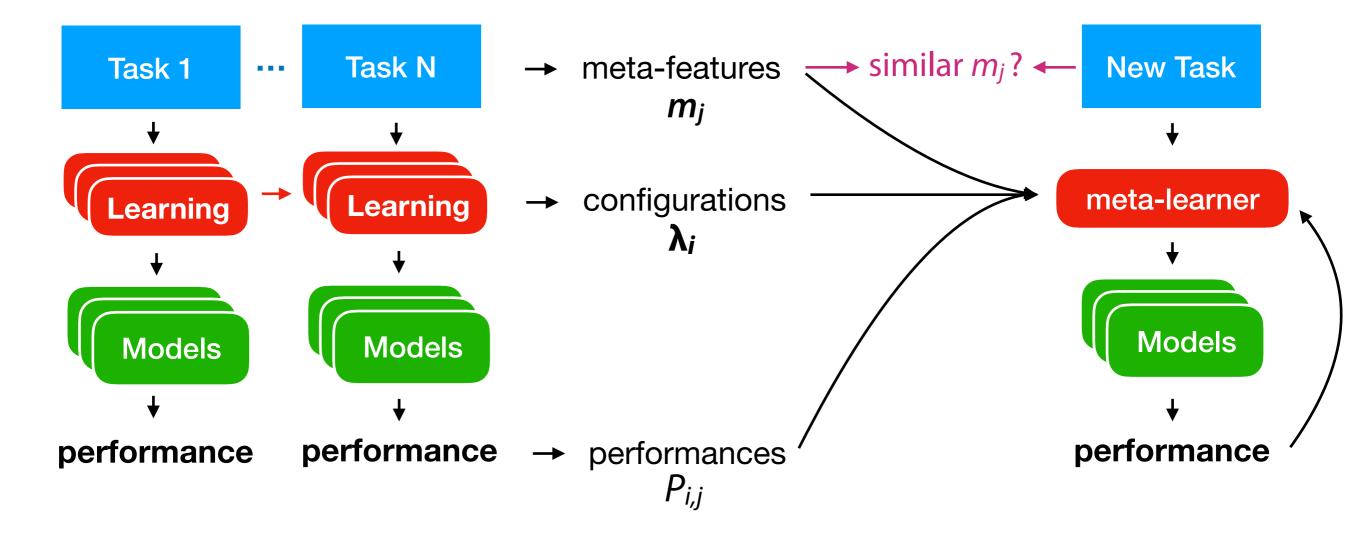
- Transfer learning with multi-armed bandits¹
 - View every task as an arm, learn to `pull` observations from the most similar tasks
 - Reward: accuracy of configurations recommended based on these observations
- Transfer learning curves^{2,3}
 - Learn a partial learning curve on a new task, find best matching earlier curves
 - Predict the most promising configurations based on earlier curves



2. Reason about model performance across tasks

Meta-features: measurable properties of the tasks

(number of instances and features, class imbalance, feature skewness,...)

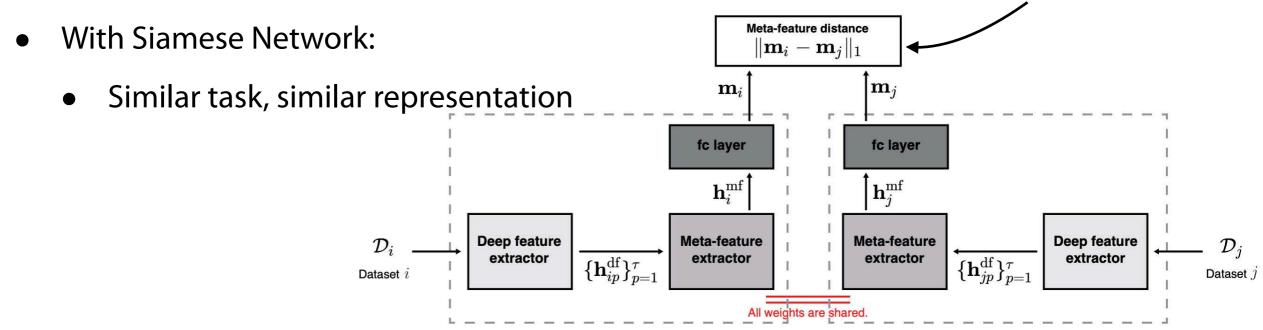


Meta-features

- Hand-crafted (interpretable) meta-features¹
 - Number of instances, features, classes, missing values, outliers,...
 - **Statistical:** skewness, kurtosis, correlation, covariance, sparsity, variance,...
 - Information-theoretic: class entropy, mutual information, noise-signal ratio,...
 - **Model-based**: properties of simple models trained on the task
 - Landmarkers: performance of fast algorithms trained on the task
 - Domain specific task properties
- Learning a joint task representation

17

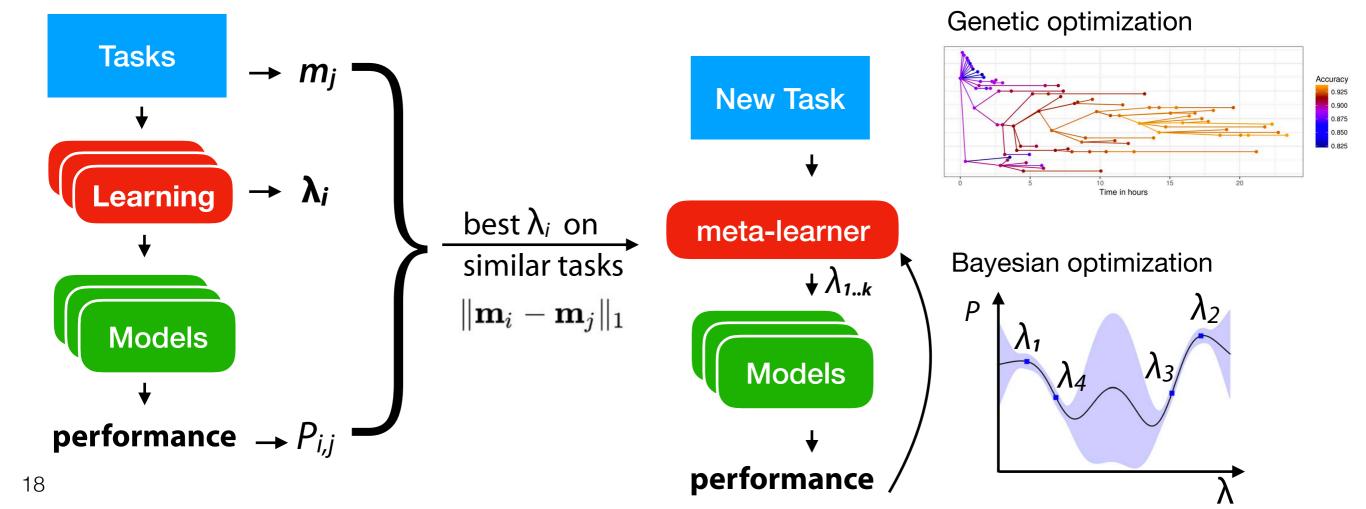
• Deep metric learning: learn a representation *h*^{*mf*} using a ground truth distance²



¹ <u>Gomes et al. 2012</u>, <u>Reif et al. 2012</u> ² <u>Feurer et al. 2015</u>

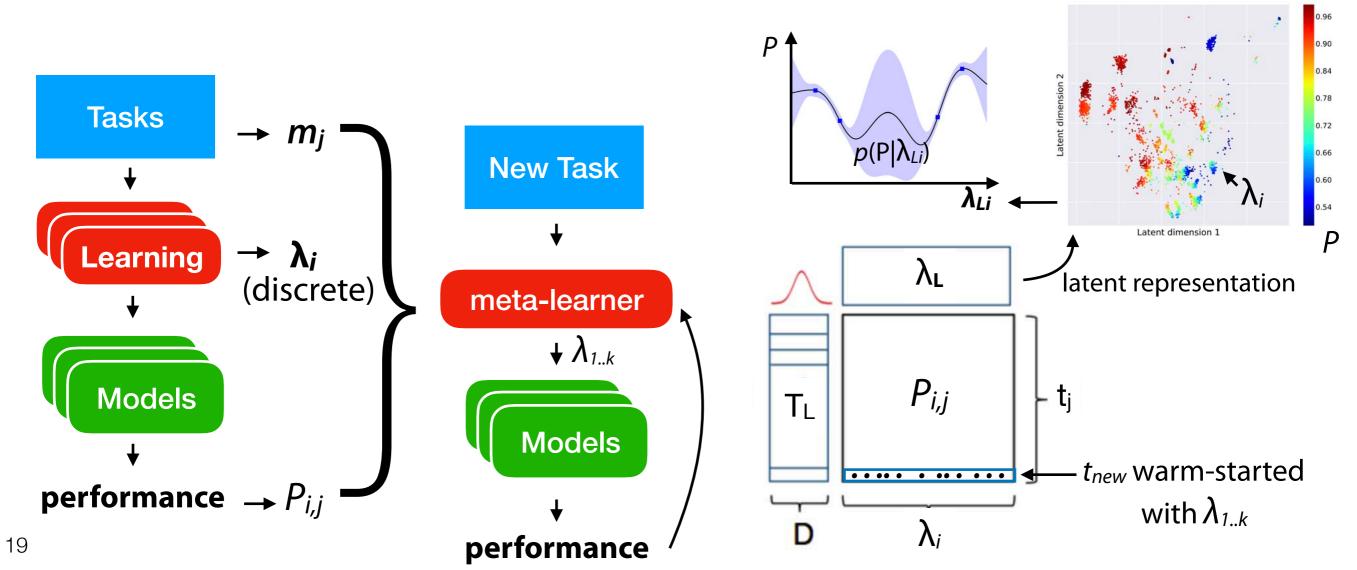
Warm-starting from similar tasks

- Find k most similar tasks, warm-start search with best θ_i
 - Genetic hyperparameter search ¹
 - Auto-sklearn: Bayesian optimization (SMAC)²
 - Scales well to high-dimensional configuration spaces



Warm-starting from similar tasks

- Collaborative filtering: configurations λ_i are `rated' by tasks t_j
 - Probabilistic matrix factorization
 - Learns a latent representation for tasks and configurations
 - Returns probabilistic predictions for Bayesian optimization
 - Use meta-features to warm-start on new task



Global surrogate models

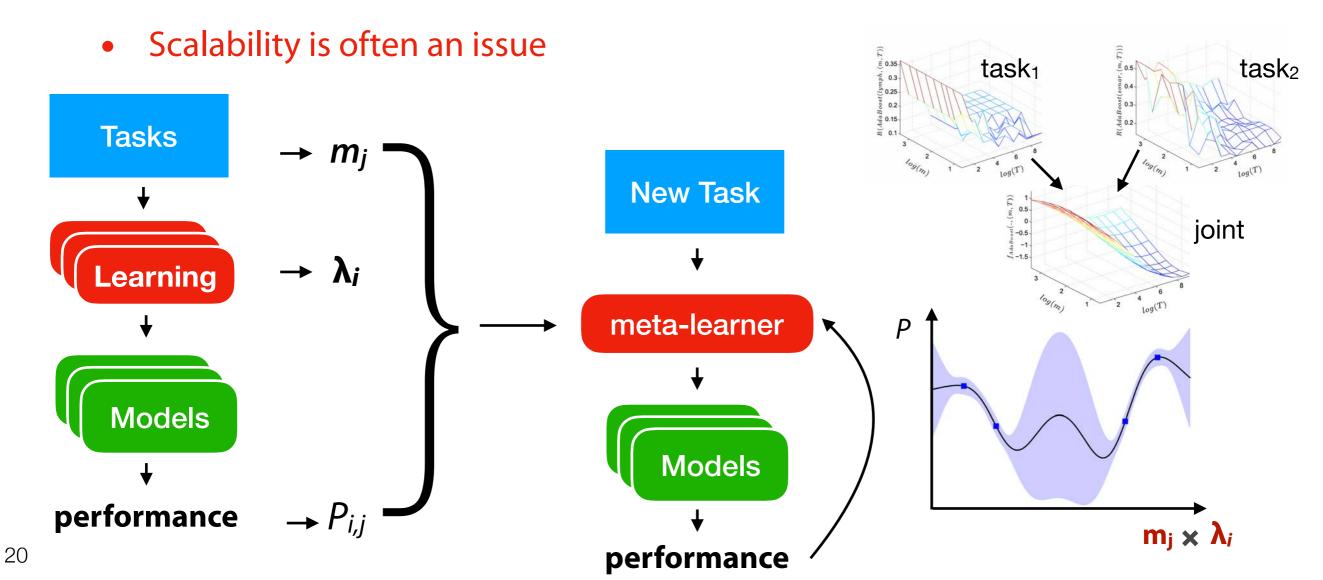
• Train a task-independent surrogate model with meta-features in inputs

¹ Bardenet et al. 2013

² Schilling et al. 2015

³ Yogatama et al. 2014

- SCOT: Predict ranking of λ_i with surrogate ranking model + $m_{j.}$ ¹
- Predict $P_{i,j}$ with multilayer Perceptron surrogates + $m_{j,2}$
- Build joint GP surrogate model on most similar ($\|\mathbf{m}_i \mathbf{m}_j\|_2$) tasks. ³



Meta-models

¹ Brazdil et al. 2009, Lemke et al. 2015
 ² Sun and Pfahringer 2013, Pinto et al. 2017
 ³ Sanders and C. Giraud-Carrier 2017
 ⁴ Yang et al. 2018

- Learn direct mapping between meta-features and P_{i,j}
 - Zero-shot meta-models: predict best λ_i given meta-features ¹

 $m_j \rightarrow \text{meta-learner} \rightarrow \lambda_{best}$

• Ranking models: return ranking $\lambda_{1..k}^2$

 $m_j \rightarrow \text{meta-learner} \rightarrow \lambda_{1..k}$

• Predict which algorithms / configurations to consider / tune³

 $m_j \rightarrow \text{meta-learner} \rightarrow \Lambda$

• Predict performance / runtime for given θ_i and task⁴

 $m_{j,}\lambda_i \rightarrow \text{meta-learner} \rightarrow P_{ij}$

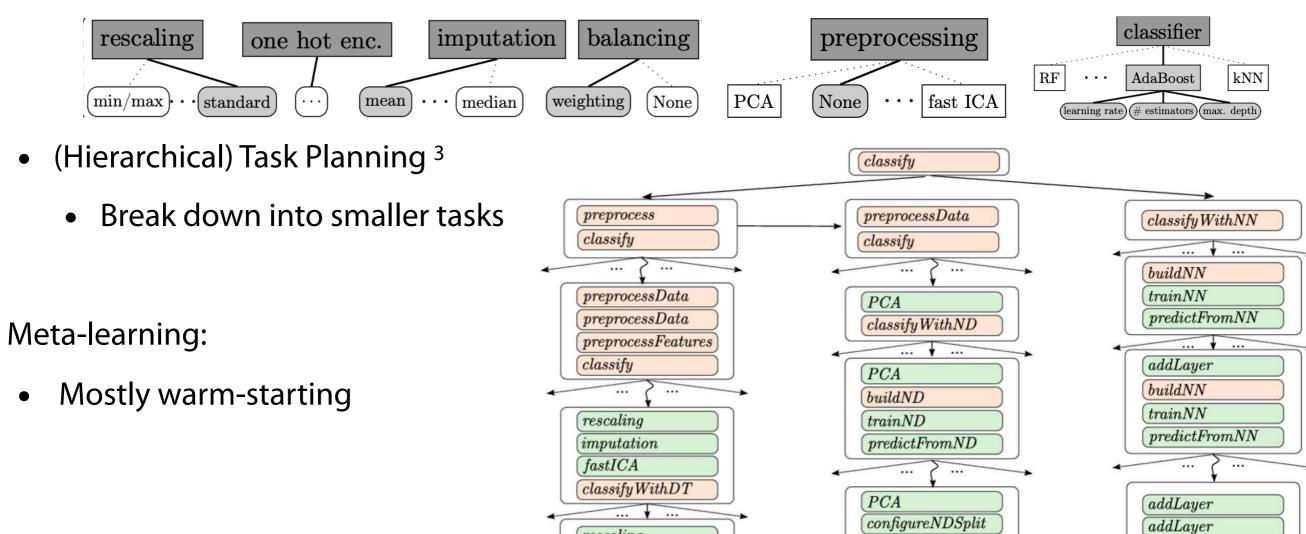
• Can be integrated in larger AutoML systems: warm start, guide search,...

¹ Fusi et al. 2017 ² Feurer et al. 2015 ³ Mohr et al. 2018

Learning Pipelines

- Compositionality: the learning process can be broken down into smaller tasks
 - Easier to learn, more transferable, more robust
- Pipelines are one way of doing this, but how to control the search space?
 - Select a fixed set of possible pipelines. Often works well (less overfitting)¹
 - Impose a fixed structure on the pipeline ²

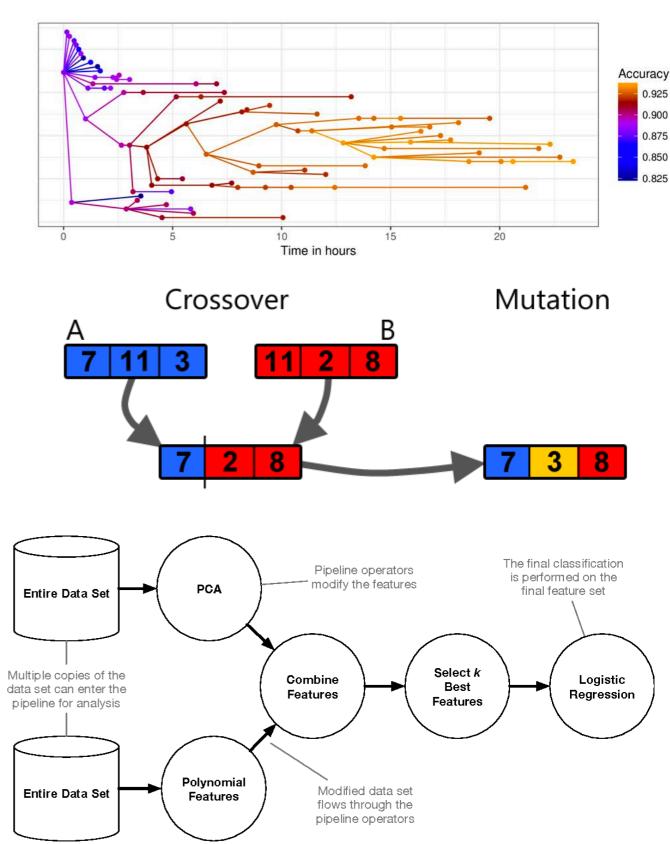
22



¹ <u>Olson et al. 2017</u> ² <u>Gijsbers et al. 2018</u> ³ <u>De Sa et al. 2017</u>

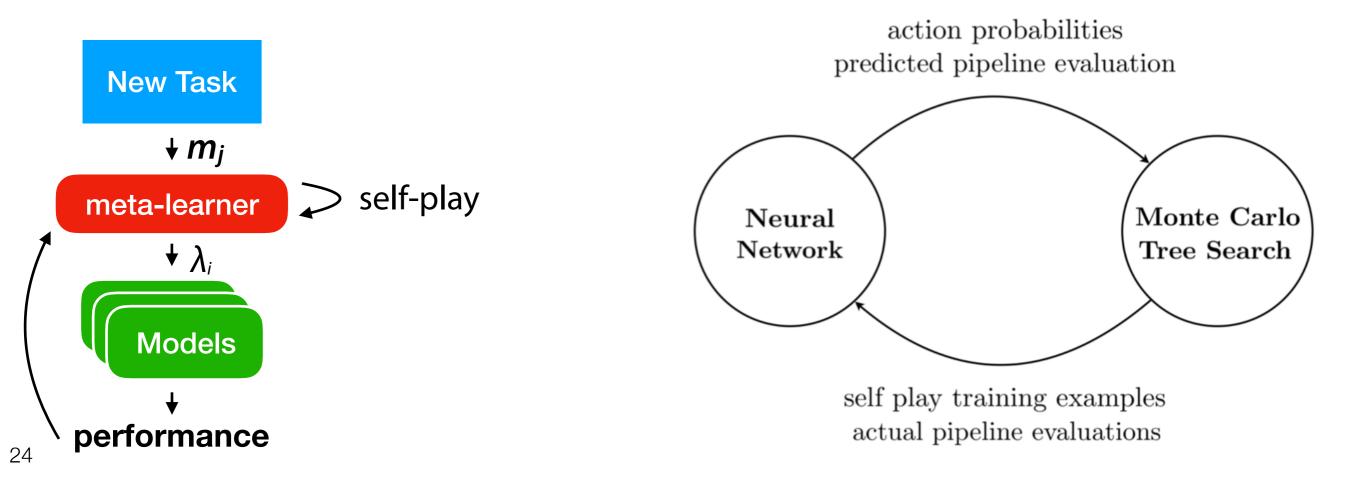
Evolving pipelines

- Start from simple pipelines
- Evolve more complex ones if needed
- Reuse pipelines that do specific things
- Mechanisms:
 - Cross-over: reuse partial pipelines
 - Mutation: change structure, tuning
- Approaches:
 - TPOT: Tree-based pipelines¹
 - GAMA: asynchronous evolution²
 - RECIPE: grammar-based³
- Meta-learning:
 - Largely unexplored
 - Warm-starting, meta-models



Learning to learn through self-play

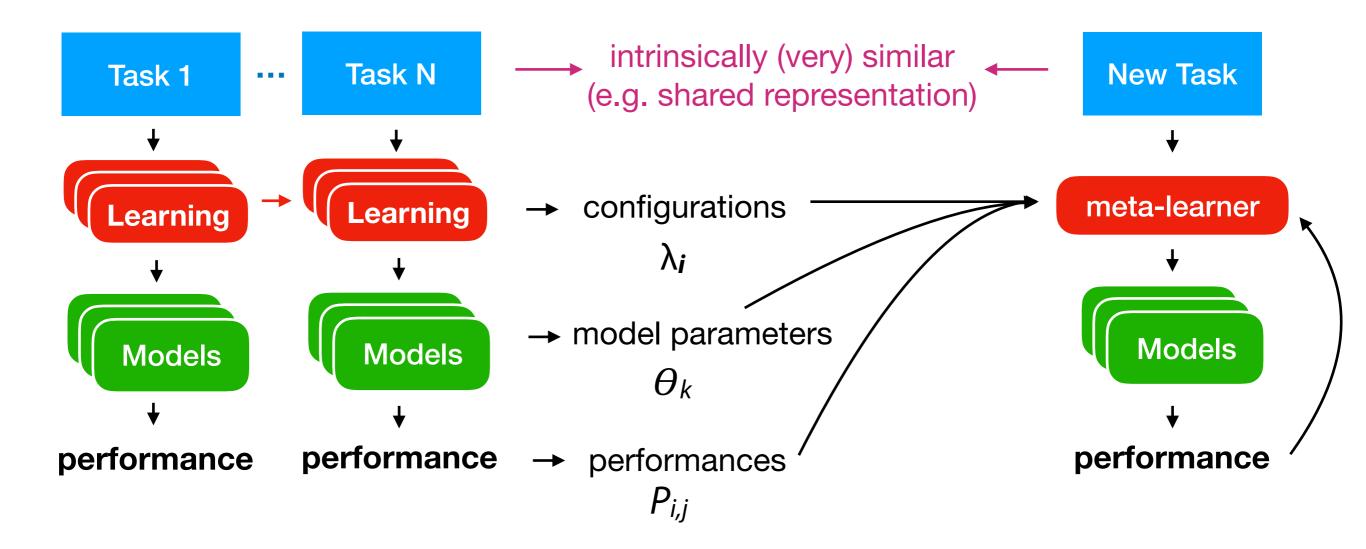
- Build pipelines by selecting among actions
 - insert, delete, replace pipeline parts
- Neural network (LSTM) receives task meta-features, pipelines and evaluations
 - Predict pipeline performance and action probabilities
- Monte Carlo Tree Search builds pipelines based on probabilities
 - Runs multiple simulations to search for a better pipeline



3. Learning from trained models

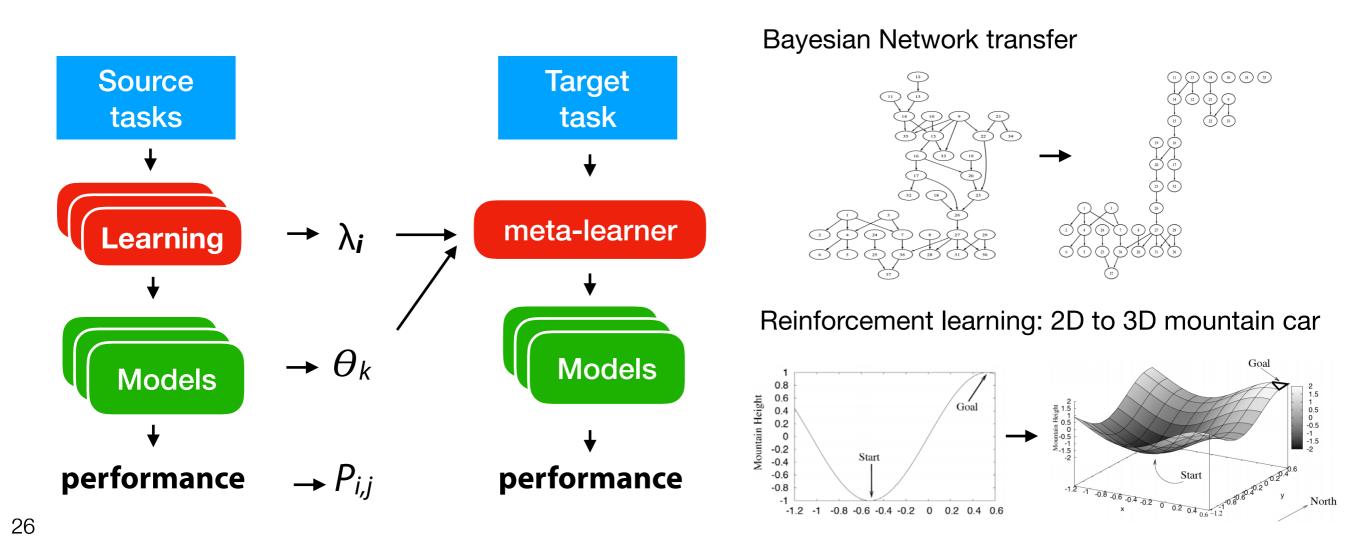
Models trained on similar tasks

(model parameters, features,...)



Transfer Learning

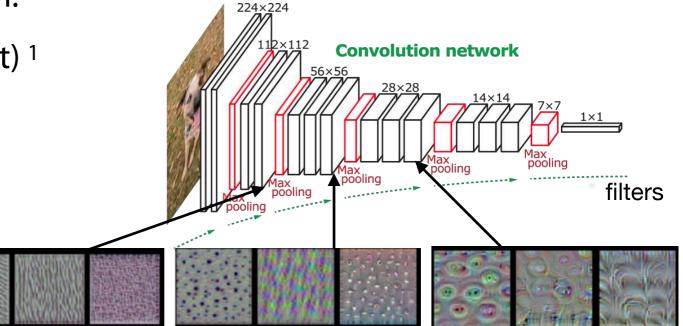
- Select source tasks, transfer trained models to similar target task ¹
- Use as starting point for tuning, or *freeze* certain aspects (e.g. structure)
 - Bayesian networks: start structure search from prior model ²
 - Reinforcement learning: start policy search from prior policy ³

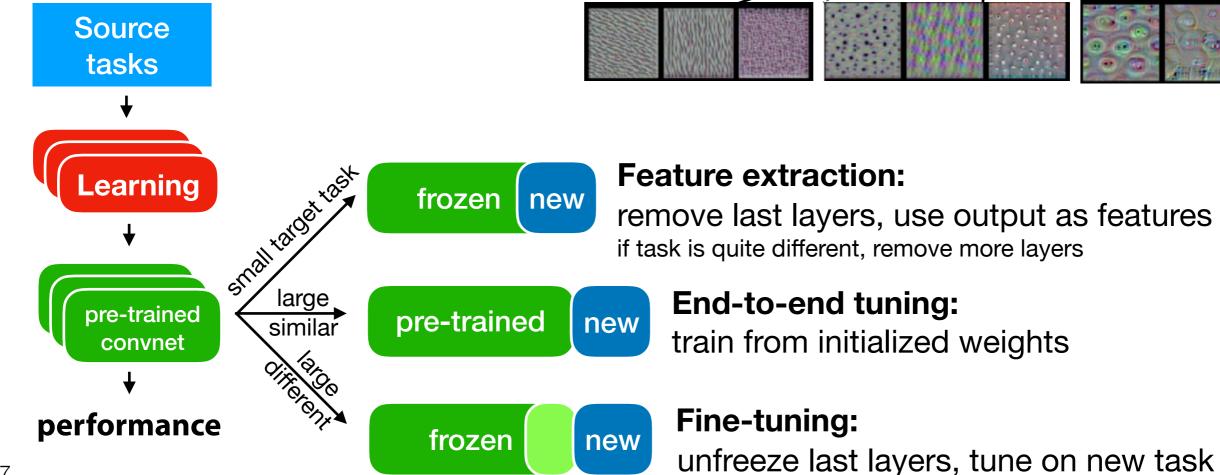


¹ <u>Razavian et al. 2014</u> ² <u>Mikolov et al. 2013</u> ³ <u>Yosinski et al. 2014</u>

Transfer features, initializations

- For neural networks, both structure and weights can be transferred
- Features and initializations learned from:
 - Large image datasets (e.g. ImageNet)¹
 - Large text corpora (e.g. Wikipedia)²
- Fails if tasks are not similar enough ³



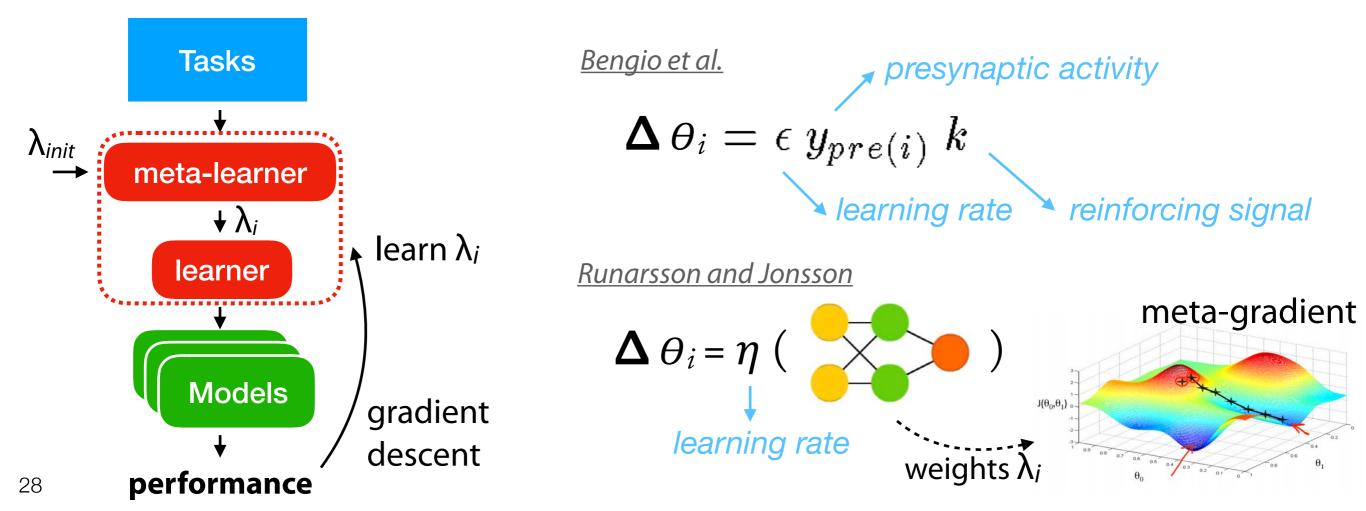


² <u>Runarsson and Jonsson 2000</u>

 Δw_{i}

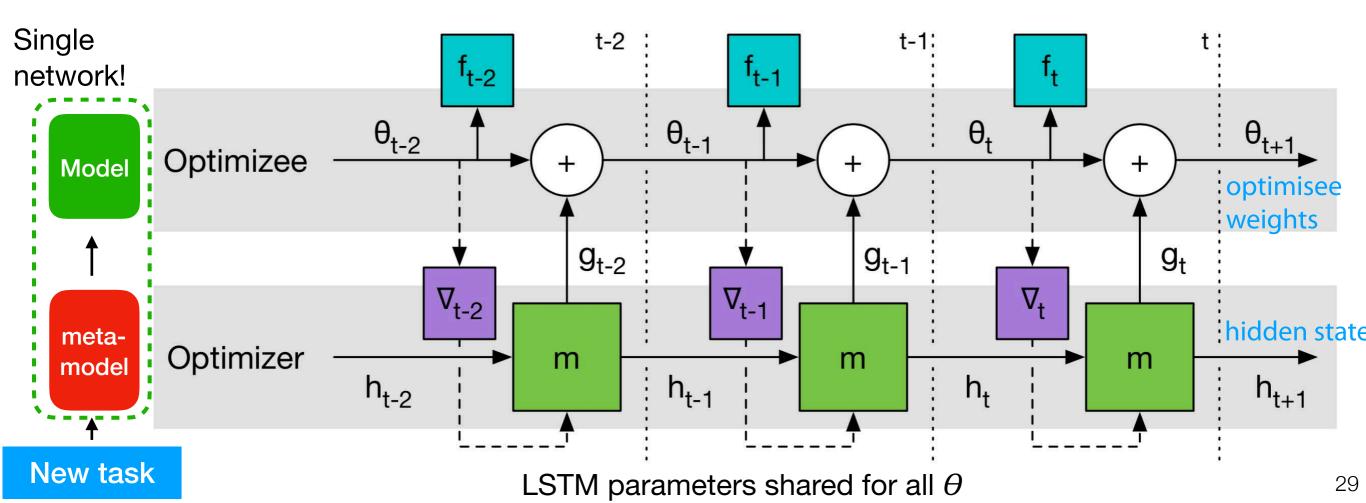
Learning to learn by gradient descent

- Our brains *probably* don't do backprop, replace it with:
 - Simple parametric (bio-inspired) rule to update weights ¹
 - Single-layer neural network to learn weight updates ²
- Learn parameters across tasks, by gradient descent (meta-gradient)



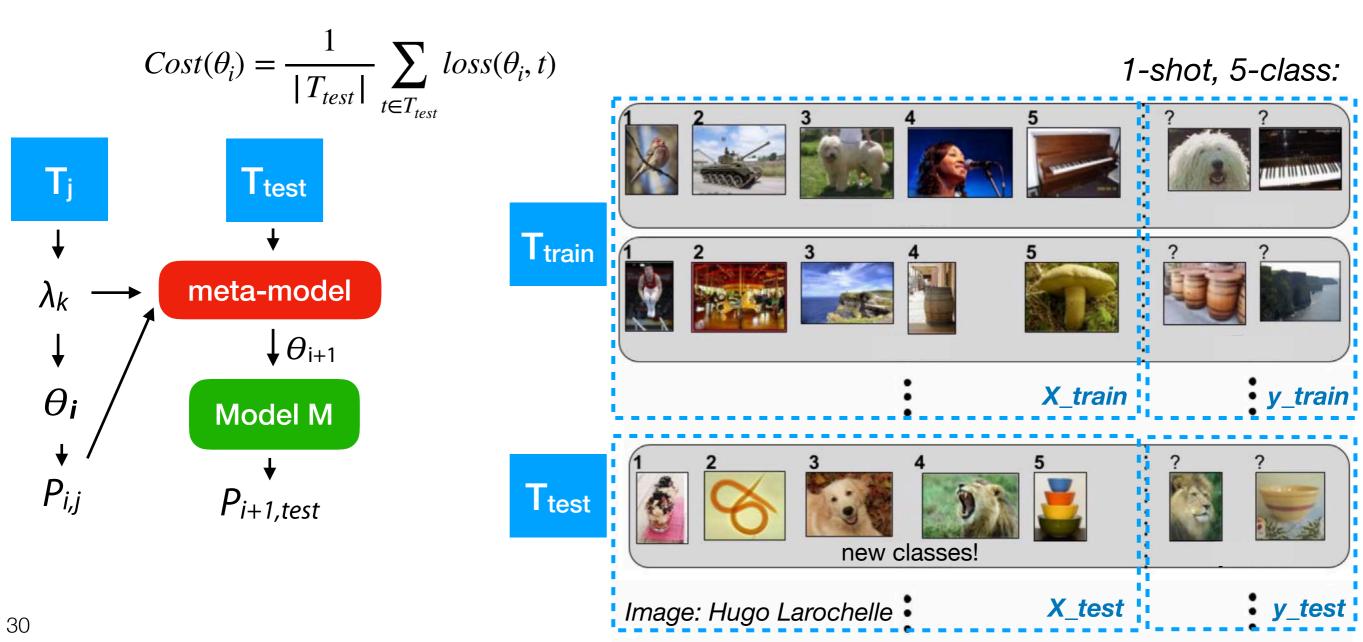
Learning to learn gradient descent by gradient descent

- Replace backprop with a recurrent neural net (LSTM)¹, not so scalable
- Use a coordinatewise LSTM [m] for scalability/flexibility (cfr. ADAM, RMSprop)²
 - Optimizee: receives weight update *g*_t from optimizer
 - Optimizer: receives gradient estimate ∇_t from optimizee
 - Learns how to do gradient descent across tasks



Few-shot learning

- Learn how to learn from few examples (given similar tasks)
 - Meta-learner must learn how to train a base-learner based on prior experience
 - Parameterize base-learner model and learn the parameters θ_i



Few-shot learning: approaches



- Existing algorithm as meta-learner:
 - LSTM + gradient descent
 - Learn θ_{init+} gradient descent
 - kNN-like: Memory + similarity
 - Learn embedding + classifier

Vinyals et al. 2016

Finn et al. 2017

Ravi and Larochelle 2017

<u>Snell et al. 2017</u>

Mishra et al. 2018

- $Cost(\theta_i) = \frac{1}{|T_{test}|} \sum_{t \in T_{test}} loss(\theta_i, t)$
- Black-box meta-learner
 - Neural Turing machine (with memory) Santoro et al. 2016
 - Neural attentive learner

31

forget

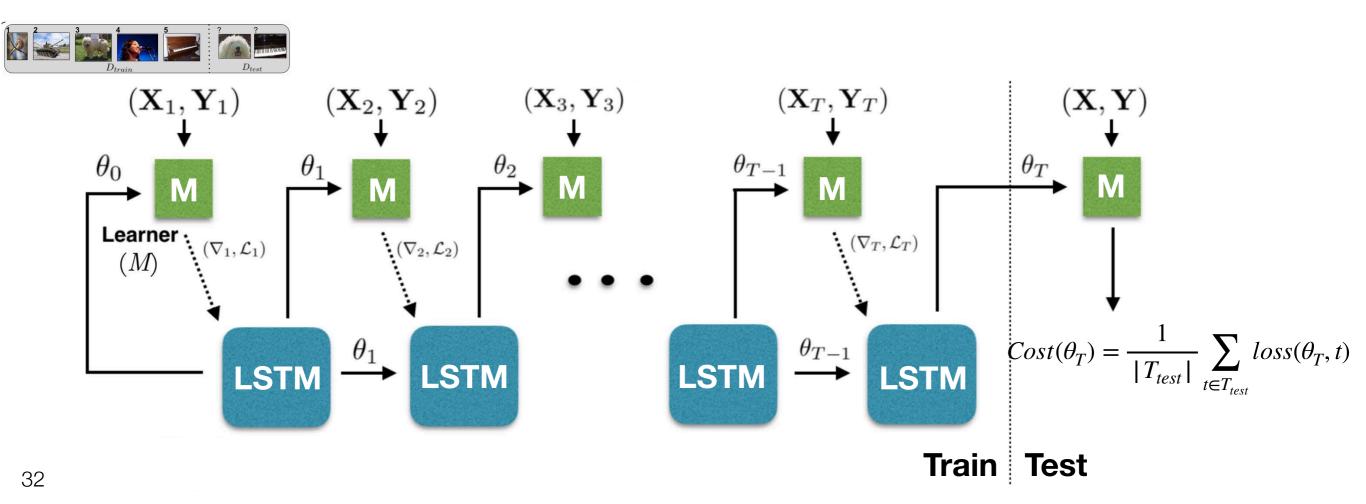
input

LSTM meta-learner + gradient descent

• Gradient descent update θ_t is similar to LSTM cell state update c_t

 $\theta_t = \theta_{t-1} - \alpha_t \nabla_{\theta_{t-1}} \mathcal{L}_t \qquad c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$

- Hence, training a meta-learner LSTM yields an update rule for training M
 - Start from initial θ_{0} , train model on first batch, get gradient and loss update
 - Predict θ_{t+1} , continue to t=T, get cost, backpropagate to learn LSTM weights, optimal θ_0

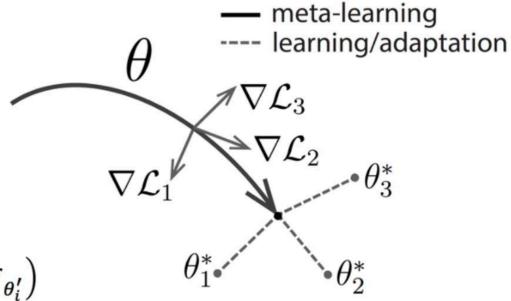


Model-agnostic meta-learning

- Quickly learn new skills by learning a model *initialization* that generalizes better to similar tasks
 - Current initialization θ
 - On K examples/task, evaluate $\nabla_{\theta} L_{T_i}(f_{\theta})$
 - Update weights for $\theta_1, \theta_2, \theta_3$
 - Update θ to minimize sum of per-task losses

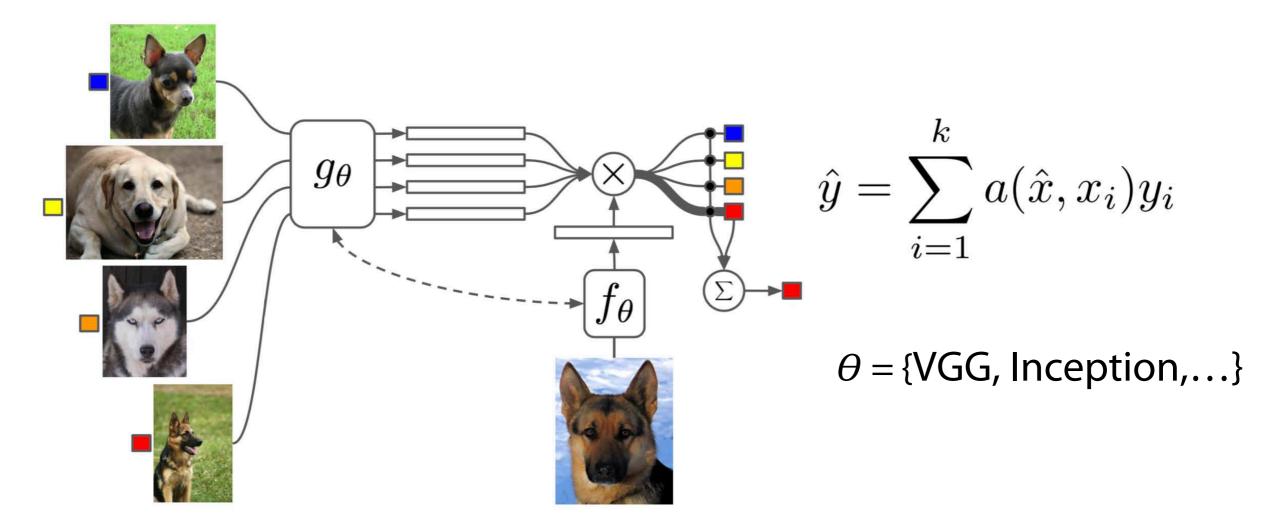
Repeat
$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{T_i \sim p(T)} \mathcal{L}_{T_i} (f_{\theta'_i})$$

- More resilient to overfitting
- Generalizes better than LSTM approaches
- Universality: no theoretical downsides in terms of expressivity when compared to alternative meta-learning models.
- REPTILE: do SGD for k steps in one task, only then update initialization weights³



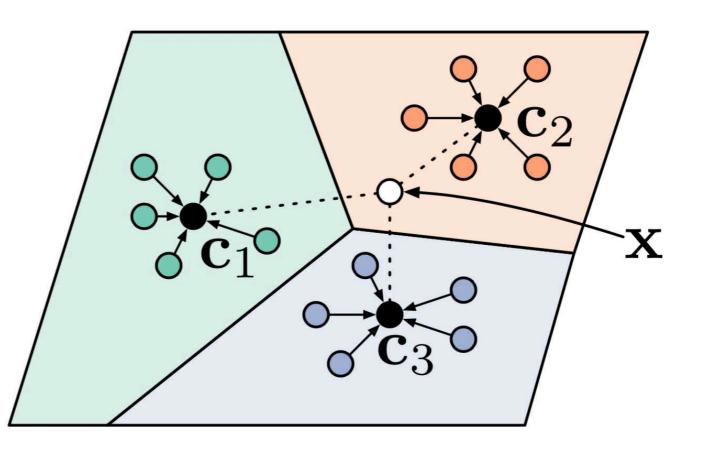
1-shot learning with Matching networks

- Don't learn model parameters, use non-parameters model (like kNN)
- Choose an embedding network f and g (possibly equal)
- Choose an attention kernel $a(\hat{x}, x_i)$, e.g. softmax over cosine distance
- Train complete network in minibatches with few examples per task



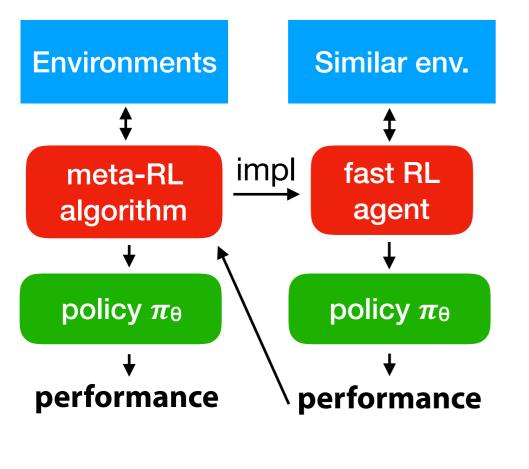
Prototypical networks

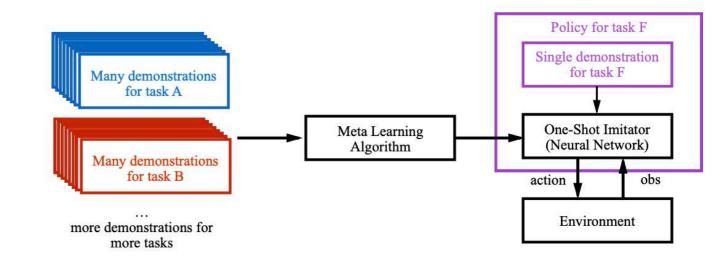
- Train a "prototype extractor" network
- Map examples to p-dimensional embedding so examples of a given class are close together
- Calculate a prototype (mean vector) for every class
- Map test instances to the same embedding, use softmax over distance to prototype
- Using more classes during meta-training works better!



Learning to reinforcement learn

- Humans often learn to play new games much faster than RL techniques do
- Reinforcement learning is very suited for learning-to-learn:
 - Build a learner, then use performance as that learner as a reward
- Learning to reinforcement learn ^{1,2}
 - Use RNN-based deep RL to train a recurrent network on many tasks
 - Learns to implement a 'fast' RL agent, encoded in its weights





¹ Duan et al. 2017

² Wang et al. 2017

³ <u>Duan et al. 201</u>7

- Also works for few-shot learning ³
 - Condition on observation + upcoming demonstration
- You don't know what someone is trying to teach you, but you prepare for the lesson

Learning to learn more tasks

- Active learning
 - Deep network (learns representation) + policy network
 - Receives state and reward, says which points to query next
- Density estimation
 - Learn distribution over small set of images, can generate new ones
 - Uses a MAML-based few-shot learner
- Matrix factorization
 - Deep learning architecture that makes recommendations
 - Meta-learner learns how to adjust biases for each user (task)
- Replace hand-crafted algorithms by learned ones.
- Look at problems through a meta-learning lens!

Pang et al. 2018

Vartak et al. 2017

Reed et al. 2017

Meta-data sharing building a shared memory

- OK, but how do I get large amounts of meta-data for meta-learning?
- OpenML.org
 - Thousands of uniform datasets
 - 100+ meta-features
 - Millions of evaluated runs
 - Same splits, 30+ metrics
 - Traces, models (opt)
 - APIs in Python, R, Java,...
 - Publish your own runs
 - Never ending learning
 - Benchmarks

Open positions! Scientific programmer Teaching PhD

```
import openml as oml
from sklearn import tree
task = oml.tasks.get_task(14951)
clf = tree.ExtraTreeClassifier()
flow = oml.flows.sklearn_to_flow(clf)
run = oml.runs.run_flow_on_task(task, flow)
myrun = run.publish()
```

Chin-Fang Lin

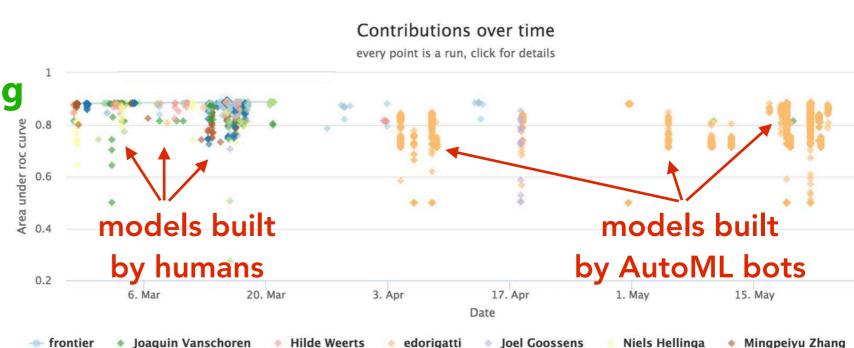
Angelo Majoor

Wenting Xiong

Changbin Lu

János Szedelényi

Stefan Majoor



Ruud Andriessen

Evertjan Peer 🔹 stevens jethefer 🔹 Hongliang Qiu 🔹 Yezi Zhu

Lirong Zhang

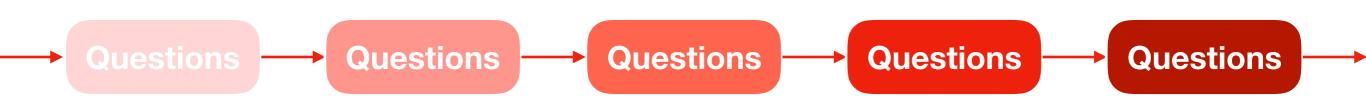
M de Roode 🔶 Tianyu Zhou

run *locally,* share *globally*

Towards human-like learning to learn

- Learning-to-learn gives humans a significant advantage
 - Learning how to learn any task empowers us far beyond knowing how to learn specific tasks.
 - It is a **universal** aspect of life, and how it evolves
- Very exciting field with many unexplored possibilities
 - Many aspects not understood (e.g. task similarity), need more experiments.
- Challenge:
 - Build learners that never stop learning, that learn from each other
 - Build a *global memory* for learning systems to learn from
 - Let them explore by themselves, active learning

Thank you! Merci!



more to learn

http://www.automl.org/book/ Chapter 2: Meta-Learning

special thanks to

Pavel Brazdil, Matthias Feurer, Frank Hutter, Erin Grant, Hugo Larochelle, Raghu Rajan, Jan van Rijn, Jane Wang