
6th ICML Workshop on Automated Machine Learning (2019)

Random Search and Reproducibility for Neural Architecture Search

Liam Li ME@LIAMCLI.COM
Carnegie Mellon University

Ameet Talwalkar TALWALKAR@CMU.EDU

Carnegie Mellon University

Abstract
Neural architecture search (NAS) is a promising research direction that has the potential to replace expert-
designed networks with learned, task-specific architectures. In order to help ground the empirical results in
this field, we propose new NAS baselines that build off the following observations: (i) NAS is a specialized
hyperparameter optimization problem; and (ii) random search is a competitive baseline for hyperparameter
optimization. Leveraging these observations, we evaluate both random search with early-stopping and a
novel random search with weight-sharing algorithm on two standard NAS benchmarks—PTB and CIFAR-10.
Our results show that random search with early-stopping is a competitive NAS baseline, e.g., it performs
at least as well as ENAS, a leading NAS method, on both benchmarks. Additionally, random search with
weight-sharing outperforms random search with early-stopping, achieving a state-of-the-art NAS result on
PTB and a highly competitive result on CIFAR-10. Finally, we explore the existing reproducibility issues of
published NAS results.

1. Introduction

Deep learning offers the promise of bypassing the process of manual feature engineering by learning
representations in conjunction with statistical models in an end-to-end fashion. However, neural network
architectures themselves are typically designed by experts in a painstaking, ad-hoc fashion. Neural architecture
search (NAS) presents a promising path for alleviating this pain by automatically identifying architectures
that are superior to hand-designed ones. Since the work by Zoph and Le [50], there has been explosion of
research activity on this problem [30; 31; 38; 11; 42; 1; 23; 5; 40; 49; 33; 46; 7]. Notably, there has been great
industry interest in NAS, as evidenced by the vast computational [50; 51; 42] and marketing resources [17]
committed to industry-driven NAS research. However, despite a steady stream of promising empirical results
[50; 51; 42; 33; 34; 7], we see three fundamental issues with the current state of NAS research:

Inadequate Baselines. Leading NAS methods exploit many of the strategies that were initially explored
in the context of traditional hyperparameter optimization tasks, e.g., evolutionary search [39; 21], Bayesian
optimization [43; 3; 20], and gradient-based approaches [2; 35]. Moreover, the NAS problem is in fact a
specialized instance of the broader hyperparameter optimization problem. However, in spite of the close
relationship between these two problems, existing comparisons between novel NAS methods and standard
hyperparameter optimization methods are inadequate. In particular, to the best of our knowledge, no state-of-
the-art hyperparameter optimization methods have been evaluated on standard NAS benchmarks. Without
benchmarking against leading hyperparameter optimization baselines, it difficult to quantify the performance
gains provided by specialized NAS methods.

Complex Methods. We have witnessed a proliferation of novel NAS methods, with research progressing
in many different directions. New approaches introduce a significant amount of algorithmic complexity
in the search process, including complicated training routines [1; 40; 46; 7], architecture transformations
[45; 42; 6; 31; 11], and modeling assumptions [23; 25; 49; 5; 30] (see Figure 1 and Appendix A.1 for more
details). While many technically diverse NAS methods demonstrate good empirical performance, they often
lack corresponding ablation studies [34; 49; 7], and as a result, it is unclear what NAS component(s) are
necessary to achieve a competitive empirical result.

©2019 L. Li and A. Talwalkar.

LI AND TALWALKAR

Lack of Reproducibility. Experimental reproducibility is of paramount importance in the context of
NAS research, given the empirical nature of the field, the complexity of new NAS methods, and the steep
computational costs associated with empirical evaluation. In particular, there are (at least) two important
notions of reproducibility to consider: (1) “exact” reproducibility i.e., whether it is possible to reproduce
explicitly reported experimental results; and (2) “broad” reproducibility, i.e., the degree to which the reported
experimental results are themselves robust and generalizable. Broad reproducibility is difficult to measure
due to the computational burden of NAS methods and the high variance associated with extremal statistics.
However, most of the published results in this field do not even satisfy exact reproducibility. For example, of
the 12 papers published since 2018 at NeurIPS, ICML, and ICLR that introduce novel NAS methods (see
Table 4), none are exactly reproducible. Indeed, each fails to provide all of the necessary components for
exact reproducibility: architecture search code, model evaluation code, random seeds used for search and
evaluation, and documentation for hyperparameter tuning.

While addressing these challenges will require community-wide efforts, in this work we present results
that aim to make some initial progress on each of these issues. In particular, our contributions are as follows:

1. We help ground existing NAS results by providing a new perspective on the gap between traditional
hyperparameter optimization and leading NAS methods. Specifically, we evaluate a general hyperpa-
rameter optimization method combining random search with early-stopping [29] on two standard NAS
benchmarks (CIFAR-10 and PTB). With approximately the same amount of compute as DARTS [33], a
state-of-the-art (SOTA) NAS method, this simple method provides a much more competitive baseline
for both benchmarks: (1) on PTB, random search with early-stopping reaches test perplexity of 56.4
compared to the published result for ENAS [40], a leading NAS method, of 56.3,1 and (2) for CIFAR-10,
random search with early-stopping achieves a test error of 2.85%, whereas the published result for ENAS
is 2.89%. While SOTA NAS methods like DARTS still outperform this baseline, our results demonstrate
that the gap is not nearly as large as that suggested by published random search baselines on these tasks
[40; 33].

2. We identify a small subset of NAS components that are sufficient for achieving good empirical results.
We construct a simple algorithm from the ground up starting from vanilla random search, and demonstrate
that properly tuned random search with weight-sharing is competitive with much more complicated
methods when using similar computational budgets. In particular, we identify the following meta-
hyperparameters that impact the behavior of our algorithm: batch size, number of epochs, network
size, and number of evaluated architectures. We evaluate our proposed method using the same search
space and evaluation scheme as DARTS [33], a leading NAS method. We explore a few modifications
of the meta-hyperparameters to improve search quality and make full use of available GPU memory
and computational resources, and observe SOTA performance on the PTB benchmark and comparable
performance to DARTS on the CIFAR-10 benchmark. We emphasize that we do not perform additional
hyperparameter tuning of the final architectures discovered at the end of the search process.

3. We open-source the code, random seeds, and documentation necessary to reproduce our experiments.2

Our single machine results shown in Table 5 and Table 1 follow a deterministic experimental setup,
given a fixed random seed, and satisfy exact reproducibility. For these experiments on the two standard
benchmarks, we study the broad reproducibility of our random search with weight-sharing results by
repeating our experiments with a different set of random seeds. We observe non-trivial differences across
the two independent runs and identify potential sources for these differences. Our results highlight the
need for more careful reporting of experimental results, increased transparency of intermediate results,
and more robust statistics to quantify the performance of NAS methods.

1. We could not reproduce this result using the final architecture and code provided by the authors.
2. All material available at https://github.com/liamcli/randomNAS_release.

2

https://github.com/liamcli/randomNAS_release

RANDOM SEARCH AND NAS

2. Experiments

Due to space constraints, we provide relevant background on NAS, discuss related work, and describe our
random search with weight-sharing algorithm in sections A.1, A.2, A.3 of the Appendix, respectively. Here,
we focus on the empirical studies that we conducted to establish better baselines for NAS.

In line with prior work [50; 40; 33], we consider the two standard benchmarks for neural architecture
search: (1) language modeling on the Penn Treebank (PTB) dataset [36] and (2) image classification on
CIFAR-10 [27]. For each of these benchmarks, we consider the same search space and use much of the same
experimental setups as DARTS [33], and by association SNAS [46], to facilitate a fair comparison of our
results to existing work.

To evaluate the performance of random search with weight-sharing (see Appendix A.3 for a description
of the algorithm) on these two benchmarks, we proceed in the same three stages as Liu et al. [33]:

Stage 1: Perform architecture search using a smaller proxy network.
Stage 2: Evaluate the best architecture from the first stage by retraining a larger proxyless network from

scratch. This stage is used to select the best architecture from multiple trials.
Stage 3: Perform a full evaluation of the best found architecture from the second stage by either training

for more epochs (PTB) or training with more seeds (CIFAR-10).
We start with the same meta-hyperparameter settings used by DARTS to train the shared weights. Then,

we incrementally modify the meta-hyperparameters identified in Appendix A.3.1 to improve performance
until we either reach state-of-the-art performance (for PTB) or match the performance of DARTS and SNAS
(for CIFAR-10).

For our evaluation of random search with early-stopping (i.e., ASHA, see Appendix A.2 for more
information on the ASHA algorithm) on these two benchmarks, we apply partial training to the stage (2)
evaluation network and then select the best architecture for stage (3) evaluation. For both benchmarks, we
run ASHA with a starting resource per architecture of r = 1 epoch, a maximum resource of 300 epochs, and
a promotion rate of η = 4, indicating the top 1/4 of architectures will be promoted in each round and trained
for 4× more resource.

Due to space limitations, we present the results for the more commonly studied CIFAR-10 benchmark
[46; 49] below and defer the results for the PTB benchmark, which mirror that for CIFAR-10, to Appendix A.5.
For the PTB benchmark, our results in Table 5 of the Appendix show ASHA to be a competitive baseline for
NAS, matching the published performance of the best architecture found by ENAS, and random search with
weight-sharing to reach SOTA for NAS methods.

2.1 CIFAR-10 Benchmark

We first present the final search results for the CIFAR-10 benchmark after stage (3) evaluation, and then dive
deeper into these results to explore the impact of meta-hyperparameters on stage (2) intermediate results, and
finally evaluate associated reproducibility ramifications. A description of the search space that we used as
well as more details on the experimental setup can be found in Appendix A.4.

2.1.1 FINAL SEARCH RESULTS

We use the same stage (3) evaluation scheme as that used by Liu et al. [33] to produce Table 1 of their paper.
In particular, we train the proxyless network configured according to the best architectures found by different
methods with 10 different seeds and report the average and standard deviation. We discuss these results in the
context of the three issues—baselines, complex methods, reproducibility—introduced in Section 1.

First, we evaluate the ASHA baseline using 9 GPU days, which is comparable to the 10 GPU days we
allotted to our independent run of DARTS. In contrast to the one random architecture evaluated by Pham
et al. [40] and the 24 evaluated by Liu et al. [33] for their random search baselines, ASHA evaluated over

3

LI AND TALWALKAR

Table 1: CIFAR-10 Benchmark: Comparison with state-of-the-art NAS methods and manually de-
signed networks. The results are grouped by those for manually designed networks, published NAS methods,
and the methods that we evaluated. Models for all methods are trained with cutout. Test error for our
contributions are averaged over 10 random seeds. Table entries denoted by "-" indicate that the field does not
apply, while entries denoted by "N/A" indicate unknown entries. The search cost is measured in GPU days.
Note that the search cost is hardware dependent and the search cost shown for our results are calculated for
Tesla P100 GPUs; all other numbers follow those reported by Liu et al. [33].
∗ We show results for the variants of these networks with comparable number of parameters. Larger versions
of these networks achieve lower errors.
Reported test error averaged over 5 seeds.
† The stage (1) cost shown is that for 1 trial as opposed to the cost for 4 trials shown for DARTS and Random
search WS. It is unclear whether multiple trials followed by stage (2) evaluation are required in order to find
a good architecture.
‡ Due to the longer evaluation we employ in stage (2) to account unstable rankings, the cost for stage (2) is 1
GPU day for results reported by Liu et al. [33] and 6 GPU days for our results.

Test Error Params Search Cost Comparable Search
Architecture Source Best Average (M) Stage 1 Stage 2 Total Search Space? Method
Shake-Shake# [9] N/A 2.56 26.2 - - - - manual
PyramidNet [47] 2.31 N/A 26 - - - - manual
NASNet-A#∗ [51] N/A 2.65 3.3 - - 2000 N RL
AmoebaNet-B∗ [42] N/A 2.55± 0.05 2.8 - - 3150 N evolution
ProxylessNAS† [7] 2.08 N/A 5.7 4 N/A N/A N gradient-based
GHN#† [49] N/A 2.84± 0.07 5.7 0.84 N/A N/A N hypernetwork
SNAS† [46] N/A 2.85± 0.02 2.8 1.5 N/A N/A Y gradient-based
ENAS† [40] 2.89 N/A 4.6 0.5 N/A N/A Y RL
ENAS [33] 2.91 N/A 4.2 4 2 6 Y RL
Random search baseline [33] N/A 3.29± 0.15 3.2 - - 4 Y random
DARTS (first order) [33] N/A 3.00± 0.14 3.3 1.5 1 2.5 Y gradient-based
DARTS (second order) [33] N/A 2.76± 0.09 3.3 4 1 5 Y gradient-based
DARTS (second order)‡ Ours 2.62 2.78± 0.12 3.3 4 6 10 Y gradient-based
ASHA baseline Ours 2.85 3.03± 0.13 2.2 - - 9 Y random
Random search WS‡ Ours 2.71 2.85± 0.08 4.3 2.7 6 9.7 Y random

700 architectures in the allotted computation time. The best architecture found by ASHA achieves an average
error of 3.03± 0.13, which is significantly better than the random search baseline provided by Liu et al. [33]
and comparable to DARTS (first order). Additionally, the best performing seed reached a test error of 2.85,
which is lower than the published result for ENAS. Similar to the PTB benchmark, these results suggest
that the gap between SOTA NAS methods and standard hyperparameter optimization is much smaller than
previously reported [40; 33].

Next, we evaluate random search with weight-sharing with tuned meta-hyperparameters (see Section 2.1.2
for details). This method finds an architecture that achieves an average test error of 2.85± 0.08, which is
comparable to the reported results for SNAS and DARTS, the top 2 weight-sharing algorithms that use a
comparable search space, as well as GHN [49]. Note that while the two manually tuned architectures we
show in Table 1 outperform the best architecture discovered by random search with weight-sharing, they have
over 7× more parameters. Additionally, the best-performing efficient NAS method, ProxylessNAS, uses a
larger proxyless network and a significantly different search space than the one we consider. We hypothesize
that using a proxyless network and applying random search with weight-sharing to the same search space as
ProxylessNAS would further improve our results; we leave this as a direction for future work.

Finally, we examine the reproducibility of the NAS methods using a comparable search space with
available code for both architecture search and evaluation (i.e., DARTS and ENAS; to our knowledge, code

4

RANDOM SEARCH AND NAS

Table 2: CIFAR-10 Benchmark: Comparison of Stage (2) Intermediate Search Results for Weight-
Sharing Methods. In stage (1), random search is run with different settings to train the shared weights. The
shared weights are then used to evaluate the indicated number of randomly sampled architectures. In stage
(2), the best of these architectures for each trial is then trained from scratch for 600 epochs. We report the
performance of the best architecture after stage (2) for each trial for each search method.
† This run was performed using the DARTS code before we corrected for non-determinism (see Ap-
pendix A.4).

Setting
Gradient Initial # Archs Trial

Method Epochs Clipping Channels Evaluated 1 2 3 4 Best Average
Reproduced DARTS† 50 5 16 - 2.92 2.77 3.00 3.05 2.77 2.94

Random (1) 50 5 16 1000 3.25 4.00 2.98 3.58 2.98 3.45
Random (2) 150 5 16 5000 2.93 3.80 3.19 2.96 2.93 3.22
Random (3) 150 1 16 5000 3.50 3.42 2.97 2.95 2.97 3.21
Random (4) 300 1 16 11000 3.04 2.90 3.14 3.09 2.90 3.04

Random (5) Run 1 150 1 24 5000 2.96 3.33 2.83 3.00 2.83 3.03
Random (5) Run 2† 150 1 24 5000 2.93 3.01 2.70 2.85 2.70 2.88

is not currently available for SNAS). For DARTS, exact reproducibility was not feasible since the code is
non-deterministic and Liu et al. [33] do not provide random seeds for the search process; hence, we focus
on broad reproducibility of the results. In our independent run, DARTS reached an average test error of
2.78 ± 0.12 compared to the published result of 2.76 ± 0.09. Notably, we observed that the process of
selecting the best architecture in stage (2) is unstable when training stage (2) models for only 100 epochs;
see Section 2.1.3 for details. Hence, we use 600 epochs in all of our CIFAR experiments, including our
independent DARTS run, which explains the discrepancy in stage (2) costs between original DARTS and our
independent run.

For ENAS, the published results do not satisfy exact reproducibility due to the same issues as those for
DARTS. We show in Table 1 the broad reproducibility experiment conducted by Liu et al. [33] for ENAS;
here, ENAS found an architecture that achieved a comparable test error of 2.91 in 8× the reported stage (1)
search cost. We then investigated the reproducibility of random search with weight-sharing. We verified exact
reproducibility and then examined broad reproducibility by comparing our results to that from an independent
run with a different set of random seeds. In this second experiment, the best architecture achieves 2.86± 0.09
average test error across 10 trials, compared to an average test error of 2.85± 0.08 in the first experiment.
While the final results are quite similar across independent runs for both DARTS and random search with
weight-sharing, we investigate various sources of discrepancies in Section 2.1.3.

2.1.2 IMPACT OF META-HYPERPARAMETERS

We next detail the meta-hyperparameter settings that we tried in order to reach competitive performance on
the CIFAR-10 benchmark via random search with weight-sharing. Similar to DARTS, in these preliminary
experiments we performed 4 separate trials of each version of random search with weight-sharing, where
each trial consists of executing stage (1) followed by stage (2). In stage (1), we train the shared weights and
use them to evaluate a given number of randomly sampled architectures on the test set. In stage (2), we select
the best architecture, according to the shared weights, to train from scratch using the proxyless network for
600 epochs.

We incrementally tune random search with weight-sharing by adjusting the following meta-hyperparameters
that impact both the training of shared weights and the evaluation of architectures using these trained weights:
number of training epochs, gradient clipping, number of architectures evaluated using shared weights, and
network size. The settings we consider for random search along with the performance of the final architectures

5

LI AND TALWALKAR

across 4 trials after retraining from scratch for each of these settings is shown in Table 2. The best setting for
random search was Random (5), which has a larger network size. The best trial for this setting reached a test
error of 2.83 when retraining from scratch. In light of these stage (2) results, we focus in stage (3) on the best
architecture found by Random (5) Run 1, and achieve an average test error of 2.85± 0.08 over 10 random
seeds as shown in Table 1.

2.1.3 INVESTIGATING REPRODUCIBILITY

Our results in this section suggest that both DARTS and Random (5) are broadly reproducible on this
benchmark, which is surprising given the unstable ranking in architectures observed between 100 and 600
epochs for stage (2) evaluation. To begin, the first row of Table 2 shows our reproduced results for DARTS
after training the best architecture for each trial from scratch for 600 epochs. In our reproduced run, DARTS
reaches an average test error of 2.94 and a minimum of 2.77 across 4 trials (see Table 2). We do not have
a direct comparison to the published result for DARTS since the stage (2) evaluation was performed after
training for only 100 epochs.

Next, as shown in the last row of Table 2, we perform an additional run of Random (5) to test the
robustness of our result. For this second set of seeds, the minimum and average test error of the best
architectures across 4 trials is 2.70 and 2.88 respectively, which differ non-trivially from that of the first run.
However, after performing the stage (3) evaluation for the best architecture from the second set of seeds,
Random (5) Run 2 reaches an average test error of 2.86± 0.09 with a minimum of 2.70 (see Table 3), which
closely match the results shown for our first run of 2.71 and 2.85± 0.08 respectively.

Delving into the intermediate results, we compare the performance of the best architectures across trials
from our independent run of DARTS, Random (5) Run 1, and Random (5) Run 2 after training each from
scratch for 100 epochs and 600 epochs (see Table 3). We see that the ranking is unstable between 100 epochs
and 600 epochs in two significant cases (i.e., reproduced DARTS and Random (5) Run 2), which motivated
our strategy of training the final architectures across trials to 600 epochs in order to select the best architecture
for final evaluation across 10 seeds. This suggests we should be cautious when using noisy signals for the
performance of different architectures, especially since architecture search is conducted for DARTS and
Random (5) for only 50 and 150 epochs respectively.

Table 3: CIFAR-10 Benchmark: Ranking of Intermediate Test Error. Architectures are retrained from
scratch using the proxyless network and the error on the test set is reported after training for the indicated
number of epochs. Rank is calculated per search method across the 4 trials. We also show the average over
10 seeds for the best architecture from the top trial for reference.
‡ These results were run before we fixed the non-determinism in DARTS code (see Appendix A.4).

Epochs Across
Search 100 600 10 Seeds
Method Trial Value Rank Value Rank Min Avg

Reproduced 1 7.63 2 2.92 2
Darts‡ 2 7.67 3 2.77 1 2.62 2.78± 0.12

3 8.38 4 3.00 3
4 7.51 1 3.05 4

Random (5) 1 7.48 2 2.96 2
Run 1 2 8.37 4 3.33 4

3 7.46 1 2.83 1 2.71 2.85± 0.08
4 7.58 3 3.00 2

Random (5) 1 7.37 2 2.93 3
Run 2‡ 2 7.65 3 3.01 4

3 8.06 4 2.70 1 2.70 2.86± 0.09
4 7.16 2 2.85 2

6

RANDOM SEARCH AND NAS

References

[1] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding
and simplifying one-shot architecture search. In International Conference on Machine Learning, 2018.

[2] Y. Bengio. Gradient-based optimization of hyperparameters. In Neural Computation, 2000.

[3] J. Bergstra et al. Algorithms for hyper-parameter optimization. In Advances in Neural Information
Processing Systems, 2011.

[4] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281–305, 2012.

[5] Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. SMASH: One-shot model architecture
search through hypernetworks. In International Conference on Learning Representations, 2018.

[6] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-level network transformation
for efficient architecture search. In International Conference on Machine Learning, 2018.

[7] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task
and hardware. In International Conference on Learning Representations, 2019.

[8] Shengcao Cao, Xiaofang Wang, and Kris M. Kitani. Learnable embedding space for efficient neural
architecture compression. In International Conference on Learning Representations, 2019.

[9] Terrance Devries and Graham W. Taylor. Improved regularization of convolutional neural networks
with cutout. 2017.

[10] T. Domhan, J. T. Springenberg, and F. Hutter. Speeding up automatic hyperparameter optimization
of deep neural networks by extrapolation of learning curves. In International Joint Conferences on
Artificial Intelligence, 2015.

[11] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Multi-objective Architecture Search for CNNs.
2018.

[12] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural Architecture Search: A Survey. 2018.

[13] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter optimization
at scale. In International Conference on Machine Learning, 2018.

[14] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. In Advances in Neural Information Processing
Systems, 2015.

[15] D. Golovin, B. Sonik, S. Moitra, G. Kochanski, J. Karro, and D.Sculley. Google vizier: A service for
black-box optimization. In SIGKDD Conference on Knowledge Discovery and Data Mining, 2017.

[16] Google. Google repo for amoebanet. https://github.com/tensorflow/tpu/tree/
master/models/official/amoeba_net, 2018.

[17] Google. Google automl. https://cloud.google.com/automl/, 2018.

[18] Google. Google repo for nasnet. https://github.com/tensorflow/models/tree/
master/research/slim/nets/nasnet, 2018.

7

https://github.com/tensorflow/tpu/tree/master/models/official/amoeba_net
https://github.com/tensorflow/tpu/tree/master/models/official/amoeba_net
https://cloud.google.com/automl/
https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet

LI AND TALWALKAR

[19] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generalization
gap in large batch training of neural networks. In Advances in Neural Information Processing Systems,
2017.

[20] F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm
configuration. In Proc. of LION-5, 2011.

[21] M. Jaderberg, V. Dalibard, S. Osindero, W.M. Czarnecki, J. Donahue, A. Razavi, O. Vinyals, T. Green,
I. Dunning, K. Simonyan, et al. Population based training of neural networks. 2017.

[22] K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperparameter optimization.
In International Conference on Artificial Intelligence and Statistics, 2015.

[23] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-Keras: Efficient Neural Architecture Search with
Network Morphism. 2018.

[24] Kirthevasan Kandasamy, Gautam Dasarathy, Junier B Oliva, Jeff Schneider, and Barnabás Póczos.
Gaussian process bandit optimisation with multi-fidelity evaluations. In Advances in Neural Information
Processing Systems, 2016.

[25] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric Xing. Neural
Architecture Search with Bayesian Optimization and Optimal Transport. Advances in Neural Information
Processing Systems, 2018.

[26] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast bayesian optimization of machine learning
hyperparameters on large datasets. International Conference on Artificial Intelligence and Statistics,
2017.

[27] A. Krizhevsky. Learning multiple layers of features from tiny images. In Technical report, Department
of Computer Science, Univsersity of Toronto, 2009.

[28] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: Bandit-based
configuration evaluation for hyperparameter optimization. International Conference on Learning
Representation, 17, 2017.

[29] Liam Li, Kevin G. Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt, Benjamin Recht,
and Ameet Talwalkar. Massively parallel hyperparameter tuning. 2019.

[30] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive Neural Architecture Search. European Conference on
Computer Vision, 2018.

[31] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hi-
erarchical representations for efficient architecture search. In International Conference on Learning
Representations, 2018.

[32] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search.
arXiv:1806.09055, 2018.

[33] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019.

[34] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural Architecture Optimization.
Advances In Neural Information Processing Systems, 2018.

8

RANDOM SEARCH AND NAS

[35] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
through reversible learning. In International Conference on Machine Learning, 2015.

[36] M. Marcus, M. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of english: The
penn treebank. Computational Linguistics, 19(2):313–330, 1993.

[37] S. Merity, N.S. Keskar, and R. Socher. Regularizing and optimizing LSTM language models. In
International Conference on Learning Representations, 2018.

[38] Renato Negrinho and Geoff Gordon. DeepArchitect: Automatically Designing and Training Deep
Architectures. 2017.

[39] Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimization tool for automating
machine learning. In Workshop on Automatic Machine Learning, 2016.

[40] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural architecture search via parameters
sharing. In International Conference on Machine Learning, 2018.

[41] E. Real, S. Moore, A. Selle, S. Saxena, Y. Leon Suematsu, Q.V. Le, and A. Kurakin. Large-scale
evolution of image classifiers. In ICML, 2017.

[42] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized Evolution for Image
Classifier Architecture Search. 2018.

[43] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, 2012.

[44] K. Swersky, J. Snoek, and R. Adams. Multi-task bayesian optimization. In Advances in Neural
Information Processing Systems, 2013.

[45] Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. Network morphism. In International
Conference on Machine Learning, 2016.

[46] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search. In
International Conference on Learning Representations, 2019.

[47] Yoshihiro Yamada, Masakazu Iwamura, and Koichi Kise. Shakedrop regularization. 2018.

[48] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. Breaking the softmax bottle-
neck: A high-rank RNN language model. In International Conference on Learning Representations,
2018.

[49] Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture search.
In International Conference on Learning Representations, 2019.

[50] Barret Zoph and Quoc V Le. Neural Architecture Search with Reinforcement Learning. International
Conference on Learning Representation, 2017.

[51] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition. In Conference on Computer Vision and Pattern Recognition, 2018.

9

LI AND TALWALKAR

Appendix A. Appendix

A.1 Background

We first provide an overview of the components of hyperparameter optimization and, by association, NAS.
As shown in Figure 1, a general hyperparameter optimization problem has three components, each of which
can have NAS-specific approaches. We provide a brief overview of the components below, drawing attention
to NAS-specific methods (see the survey by Elsken et al. [12] for a more thorough coverage of NAS).

Search
Space

Search
Method

Evaluation
Method

Reinforcement
Learning

Evolutionary Search

Gradient-Based
Optimization

Bayesian
Optimization

Full Training

Partial Training

Hypernetworks

Weight-Sharing
Network MorphismCell Block

Meta-Architecture

Unstructured &
Structured

Continuous &
 Discrete Random Search

Figure 1: Components of hyperparameter optimization. Primarily NAS-specific methods are lined in
purple.

Search Space. Hyperparameter optimization involves identifying a good hyperparameter configuration
from a set of possible configurations. The search space defines this set of configurations, and can include
continuous or discrete hyperparameters in a structured or unstructured fashion [43; 4; 14; 39]. NAS-specific
search spaces usually involve discrete hyperparameters with additional structure that can be captured with a
directed acyclic graph (DAG) [40; 33]. Additionally, since a search space for designing an entire architecture
would have too many nodes and edges, search spaces are usually defined over some smaller building block,
i.e., cell blocks, that are repeated in some way via a preset or learned meta-architecture to form a larger
architecture [12]. We design our random search NAS algorithm for such a cell block search space, using the
same search spaces for the CIFAR-10 and PTB benchmarks as DARTS for our experiments. We provide a
concrete example of one such search space in Appendix A.3.

Search Method. Given a search space, there are various search methods to select putative configurations
to evaluate. Random search is the most basic approach, yet it is quite effective in practice [4; 28]. Various
general and NAS-specific adaptive methods have also been introduced, all of which attempt to bias the search
in some way towards configurations that are more likely to perform well. In traditional hyperparameter
optimization, the choice of search method can depends on the search space. Bayesian approaches based on
Gaussian processes [43; 26; 44; 24] and gradient-based approaches [2; 35] are generally only applicable to
continuous search spaces. In contrast, tree-based Bayesian [20; 3], evolutionary strategies [39], and random
search are more flexible and can be applied to any search space. NAS-specific search methods can also be
categorized into the same broad categories but are tailored for structured NAS search spaces (we provide a
more involved discussion in Appendix A.2).

Evaluation Method. For each hyperparameter configuration considered by a search method, we must
evaluate its quality. The default approach to perform such an evaluation involves fully training a model
with the given hyperparameters, and subsequently measuring its quality, e.g., its predictive accuracy on a
validation set. The first generation of NAS methods relied on full training evaluation, and thus required

10

RANDOM SEARCH AND NAS

thousands of GPU days to achieve a desired result [50; 41; 51; 42]. In contrast, partial training methods
exploit early-stopping to speed up the evaluation process at the cost of noisy estimates of configuration quality.
These methods use Bayesian optimization [26; 24; 13], performance prediction [15; 10], or multi-armed
bandits [22; 28; 29] to adaptively allocate resources to different configurations. NAS-specific evaluation
methods exploit the structure of neural networks to provide even cheaper, heuristic estimates of quality.
Many of these methods center around sharing and reuse: network morphisms build upon previously trained
architectures [6; 11; 23]; hypernetworks and performance prediction encode information from previously
seen architectures [5; 30; 49]; and weight-sharing methods [40; 33; 1; 46; 7] use a single set of weights for
all possible architectures.

A.2 Related Work

We now provide additional context for the three issues we identified with the current state of NAS research in
Section 1.

A.2.1 INADEQUATE BASELINES

Existing works in NAS do not provide adequate comparison to random search and other hyperparameter
optimization methods. Some works either compare to random search given a budget of just of few evaluations
[40; 33] or Bayesian optimization methods without efficient architecture evaluation schemes [23]. While
Real et al. [42] and Cai et al. [6] provide a thorough comparison to random search, they use random search
with full training even though partial training methods have been shown to be orders-of-magnitude faster
than standard random search [28; 29].

Although certain hyperparameter optimization methods [43; 35; 26] require non-trivial modification in
order to work with NAS search spaces, others are easily applicable to NAS problems [20; 3; 10; 13; 28; 29].
Of these applicable methods, we choose to use a simple method combining random search with early-stopping
called ASHA [29] to provide a competitive baseline for standard hyperparameter optimization. Li et al. [29]
showed ASHA to be a state-of-the-art, theoretically principled, bandit-based partial training method that
outperforms leading adaptive search strategies for hyperparameter optimization. We compare the empirical
performance of ASHA with that of NAS methods in Section 2.

A.2.2 COMPLEX METHODS

Much of the complexity of NAS methods is introduced in the process of adapting search methods for
NAS-specific search spaces, which usually involve discrete hyperparameters with a DAG representation
where each node represents local computations and edges of the DAG represent the flow of data from one
node to another [40; 33]. Evolutionary approaches need to define a set of possible mutations to apply to
different architectures [41; 42]; Bayesian optimization approaches [23; 25] rely on specially designed kernels;
gradient-based methods transform the discrete architecture search problem into a continuous optimization
problem [34; 33; 46; 7]; and Zoph and Le [50], Zoph et al. [51], and Pham et al. [40] use reinforcement
learning to train a recurrent neural network controller to generate good architectures. All of these search
approaches add a significant amount of complexity with no clear winner, especially since methods some
times use different search spaces and evaluation methods. To simplify the search process and help isolate
important components of NAS, we use random search to sample architectures from the search space.

Additional complexity is also introduced by NAS-specific evaluation methods—like network morphisms;
hypernetworks and performance prediction; and weight-sharing— that exploit the structure of NAS search
spaces to speed up the evaluation of the quality of different architectures. Network morphisms require
architecture transformations that satisfy certain criteria; hypernetworks and performance prediction methods
encode information from previously seen architectures in an auxiliary network; and weight-sharing methods

11

LI AND TALWALKAR

[40; 33; 1; 46; 7] use a single set of weights for all possible architectures and hence, can require careful
training routines.

Despite their complexity, these more efficient NAS evaluation methods are 1–3 orders-of-magnitude
cheaper than full training (see Table 1 and Table 5), at the expense of decreased fidelity to the true performance.
Of these evaluation methods, network morphism still requires on the order of 100 GPU days [30; 11] and,
while hypernetworks and prediction performance based methods can be cheaper, weight-sharing is less
complex since it does not require training an auxiliary network. In addition to the computational efficiency of
weight-sharing methods [33; 40; 7; 46], which only require computation on the order of fully training a single
architecture, this approach has also achieved the best result on the two standard benchmarks [33; 7]. Hence,
we use random search with weight-sharing as our starting point for a simple and efficient NAS method.

Our work is inspired by the result of Bender et al. [1], which showed that random search, combined with a
well-trained set of shared weights can successfully differentiate good architectures from poor performing ones.
However, their work required several modifications to stabilize training (e.g., a tunable path dropout schedule
over edges of the search DAG and a specialized ghost batch normalization scheme [19]). Furthermore,
they only report experimental results on the CIFAR-10 benchmark, on which they fell slightly short of the
results for leading NAS methods. In contrast, our combination of random search with weight-sharing greatly
simplifies the training routine and we identify key variables needed to achieve competitive results on both
CIFAR-10 and PTB benchmarks.

A.2.3 LACK OF REPRODUCIBILITY

The earliest NAS results lacked exact and broad reproducibility due to the tremendous amount of computation
required to achieve the results [50; 51; 42]. Additionally, some of these methods used specialized hardware
(i.e., TPUs) that were not easily accessible to researchers at the time [42]. Although the final architectures
were eventually provided [18; 16], the code for the search methods used to produce these results has not been
released, precluding researchers from reproducing these results even if they had sufficient computational
resources.

Table 4: Reproducibility of NAS Publications. Summary of the reproducibility status of recent NAS
publications appearing in top machine learning conferences. For the hyperparameter tuning column, N/A
indicates we are not aware that the authors performed additional hyperparameter optimization.
† Published result is not reproducible for the PTB benchmark when training the reported final architecture
with provided code.
∗ Code to reproduce experiments was requested on OpenReview.

Architecture Model Evaluation Random Hyperparameter
Conference Publication Search Code Code Seeds Tuning
ICLR 2018 Brock et al. [5] Yes Yes No N/A

Liu et al. [31] No No
ICML 2018 Pham et al. [40]† Yes Yes No Undocumented

Cai et al. [6] Yes Yes No N/A
Bender et al. [1] No No

NIPS 2018 Kandasamy et al. [25] Yes Yes No N/A
Luo et al. [34] Yes Yes No Grid Search

ICLR 2019 Liu et al. [33] Yes Yes No Undocumented
Cai et al. [7] No Yes No N/A

Zhang et al. [49]∗ No No
Xie et al. [46]∗ No No
Cao et al. [8] No No

12

RANDOM SEARCH AND NAS

Recently, it has become feasible to evaluate the exact and broad reproducibility of many SOTA methods
due to their reduced computational cost. However, while many authors have released code for their work
[e.g., 40; 33; 5; 6], others have not made their code publicly available [e.g., 46; 49], including the work most
closely related to ours by Bender et al. [1]. We summarize the reproducibility of recent NAS publications at
some of the major machine learning conferences in Table 4 according to the availability of the following:

1. Architecture search code. The output of this code is the final architecture that should be trained on
the evaluation task.

2. Model evaluation code. The output of this code is the final performance on the evaluation task.

3. Hyperparameter tuning documentation. This includes code used to perform hyperparameter tuning
of the final architectures, if any.

4. Random Seeds. This includes random seeds used for both the search and post-processing (i.e.,
retraining of final architecture as well as any additional hyperparameter tuning) phases. Most works
provide the final architectures but random seeds are required to verify that the search process actually
results in those final architectures and the performance of the final architectures matches the published
result. Note the random seeds are only useful if the code for search and post-processing phases are
deterministic up to a random seed; this was not the case for the DARTS code used for the CIFAR-10
benchmark.

All 4 criteria are necessary for exact reproducibility. Due to the absence of random seeds for all methods
with released code, none of the methods in Table 4 are exactly reproducible from the search phase to the final
architecture evaluation phase.

While only criteria 1–3 are necessary to estimate broad reproducibility, there is minimal discussion of
the broad reproducibility of existing methods in published work. With the exception of NASBOT [25] and
DARTS [33], the methods in Table 4 only report the performance of the best found architecture, presumably
resulting from a single run of the search process. Although this is understandable in light of the computational
costs for some of these methods [34; 6], the high variance of extremal statistics makes it difficult to isolate
the impact of the novel contributions introduced in each work. DARTS is particularly commendable in
acknowledging its dependence on random initialization, prompting the use multiple runs to select the best
architecture. In our experiments in Section 2, we follow DARTS and report the result of our random weight-
sharing method across multiple trials; in fact, we go one step further and evaluate the broad reproducibility of
our results with another set of random seeds.

A.3 Random Search with Weight-Sharing

We now introduce our NAS algorithm that combines random search with weight-sharing. Our algorithm is
designed for an arbitrary search space with a DAG representation, and in our experiments in Section 2, we
use the same search spaces as that considered by DARTS [33] for the standard PTB and CIFAR-10 NAS
benchmarks.

For concreteness, consider the search space used by DARTS for designing a recurrent cell for the PTB
benchmark: the DAG considered for the recurrent cell has N = 8 nodes and the operations considered
include tanh, relu, sigmoid, and identity. Figure 2 shows an example of an architecture from this search space.
To sample an architecture from this search space, we apply random search in the following manner:

1. For each node in the DAG, determine what decisions must be made. In the case of the PTB search space,
we need to choose a node as input and a corresponding operation to apply to generate the output of the
node.

13

LI AND TALWALKAR

x_{t}
0

h_{t-1}

1relu

2tanh

5sigmoid

8
identity

3tanh

4identity

6relu
h_{t}

7identity

Figure 2: Recurrent Cell on PTB Benchmark. The best architecture found by random search with weight-
sharing in Section A.5 is depicted. Each numbered square is a node of the DAG and each edge represents
the flow of data from one node to another after applying the indicated operation along the edge. Nodes with
multiple incoming edges (i.e., node 0 and output node h_{t} concatenate the inputs to form the output of
the node).

2. For each decision, identify the possible choices for the given node. In the case of the PTB search space, if
we number the nodes from 1 to N , node i can take the outputs of nodes 0 to node i− 1 as input (the initial
input to the cell is index 0 and is also a possible input). Additionally, we can choose an operation from
{tanh, relu, sigmoid, and identity} to apply to the output of node i.

3. Finally, moving from node to node, we sample uniformly from the set of possible choices for each decision
that needs to be made.

In order to combine random search with weight-sharing, we simply use randomly sampled architectures
to train the shared weights. In the case of the PTB benchmark, the same weights are applied to all possible
inputs to a node. Shared weights are updated by selecting a single architecture for a given minibatch and
updating the shared weights by back-propagating through the network with only the edges and operations as
indicated by the architecture activated. Hence, the number of architectures used to update the shared weights
is equivalent to the total number of minibatch training iterations.

After training the shared weights for a certain number of epochs, we use these trained shared weights to
evaluate the performance of a number of randomly sampled architectures on a separate held out dataset. We
select the best performing one as the final architecture, i.e., as the output of our search algorithm.

A.3.1 RELEVANT META-HYPERPARAMETERS

There are a few key meta-hyperparameters that impact the behavior of our search algorithm. We describe
each of them below, along with a description of how we expect them to impact the search algorithm, both in
terms of search quality and computational costs.

Training epochs. Increasing the number of training epochs while keeping all other parameters the same
increases the total number of minibatch updates and hence, the number of architectures used to update the
shared weights. Intuitively, training with more architectures should help the shared weights generalize better
to what are likely unseen architectures in the evaluation step. Unsurprisingly, more epochs increase the
computational time required for architecture search.

Batch size. Decreasing the batch size while keeping all other parameters the same also increases the
number of minibatch updates but at the cost of noisier gradient update. Hence, we expect reducing the batch
size to have a similar effect as increasing the number of training epochs but may necessitate adjusting other
meta-hyperparameters to account for the noisier gradient update. Intuitively, more minibatch updates increase
the computational time required for architecture search.

14

RANDOM SEARCH AND NAS

Network size. Increasing the search network size increases the dimension of the shared weights.
Intuitively, this should boost performance since a larger search network can store more information about
different architectures. Unsurprisingly, larger networks require more GPU memory.

Number of evaluated architectures. Increasing the number of architectures that we evaluate using the
shared weights allows for more exploration in the architecture search space. Intuitively, this should help
assuming that there is a high correlation between the performance of an architecture evaluated using shared
weights and the ground truth performance of that architecture when trained from scratch [1]. Unsurprisingly,
evaluating more architectures increases the computational time required for architecture search.

Other learning meta-hyperparameters will likely need to be adjusted accordingly for different settings
of the key relevant meta-hyperparameters listed above. In our experiments in Section 2, we tune gradient
clipping as a fifth meta-hyperparameter, though there are other possible meta-hyperparameters that may
benefit from additional tuning (e.g., learning rate, momentum).

In Section 2, following these intuitions, we incrementally explore the design space of our search method
in order to improve search quality and make full use of the available GPU memory and computational
resources.

A.4 CIFAR-10 Benchmark

In this section, we provide additional detail for the experiments in Section 2.1.
Following DARTS, the DAG considered for the convolutional cell has N = 4 search nodes and the

operations considered include 3 × 3 and 5 × 5 separable convolutions, 3 × 3 and 5 × 5 dilated separable
convolutions, 3× 3 max pooling, and 3× 3 average pooling, and zero [33]. To sample an architecture from
this search space, we have to choose, for each node, 2 input nodes from previous nodes and associated
operations to perform on each input (there are two initial inputs to the cell that are also possible choices); we
sample in this fashion twice, once for the normal convolution cell and one for the reduction cell (e.g., see
Figure 3).

Due to higher memory requirements for weight-sharing, Liu et al. [33] uses a smaller proxy network with
8 stacked cells and 16 initial channels to perform the convolutional cell search, followed by a larger proxyless
network with 20 stacked cells and 36 initial channels to perform the evaluation. We use the same proxy and
proxyless networks for the relevant stages of the experiment. We discuss how our setup differs from that of
DARTS below.

Architecture Operations. In stage (1), DARTS trained the shared weights network with the zero
operation included in the list of considered operations but removed the zero operation when selecting the
final architecture to evaluate in stages (2) and (3). For our random search with weight-sharing, we decided to
include the zero operation for both search and evaluation. We hypothesize that our results may improve if we
impose a higher complexity on the final architectures by excluding the zero operation.

Stage 1 Procedure. For random search with weight-sharing, after the shared weights are fully trained,
we evaluate randomly sampled architectures using the shared weights and select the best one for stage (2)
evaluation. Due to the higher cost of evaluating on the full validation set, we evaluate each architecture using
10 minibatches instead. We split the total number of architectures to be evaluated into sets of 1000. For each
1000, we select the best 10 according the cheap evaluation on part of the validation set and evaluate on the
full validation set. Then we select the top architecture across all sets of 1000 for stage (2) evaluation.

Reproducibility. The code released by Liu et al. [33] did not produce deterministic results for the CNN
benchmark due to non-determinism in CuDNN and in data loading. We removed the non-deterministic
behavior in CuDNN by setting

cudnn.benchmark = False
cudnn.deterministic = True
cudnn.enabled=True

15

LI AND TALWALKAR

c_{k-2}

0

sep_conv_5x5
2

max_pool_3x3

c_{k-1}

skip_connect

1

sep_conv_5x5

3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_5x5 c_{k}

(a) Normal Cell

c_{k-2}

0

sep_conv_5x5

1

max_pool_3x3

2
dil_conv_5x5c_{k-1}

dil_conv_3x3

avg_pool_3x3

skip_connect 3
avg_pool_3x3

c_{k}

dil_conv_5x5

(b) Reduction Cell

Figure 3: Convolutional Cells on CIFAR-10 Benchmark: Best architecture found by random search with
weight-sharing.

Note that this only disables the non-deterministic functions in CuDNN and does not adversely affect training
time as much as turning off CuDNN completely. We fix additional non-determinism from data loading by
setting the seed for the random package in addition to numpy.random and pytorch seed and turning
off multiple threads for data loading.

We ran ASHA and one set of trials for random search with weight-sharing using the non-deterministic
code before fixing the seeding to get deterministic results. Hence, the result for ASHA does not satisfy
exact reproduciblity due to non-deterministic training and asynchronous updates. Due to the demanding
computational cost of these experiments, we use the non-deterministic runs of random with weight-sharing as
the second set of trials for Random (5) in Table 2, all other settings for random search with weight-sharing
are deterministic.

The best architecture found by Random (5) Run 1 for the normal and reduction cells is shown in Figure 3.

A.5 PTB Benchmark

We now present results for the PTB benchmark. We use the DARTS search space for the recurrent cell, which
is described in Appendix A.3. For this benchmark, due to higher memory requirements for their mixture
operation, DARTS used a small recurrent network with embedding and hidden dimension of 300 to perform
the architecture search followed by a larger network with embedding and hidden dimension of 850 to perform
the evaluation. For the PTB benchmark, we refer to the network used in the first stage as the proxy network
and the network in the later stages as the proxyless network.

Our setup matches that of DARTS with the following exceptions:

Architecture Operations. In stage (1), DARTS trained the shared weights network with the zero
operation included in the list of considered operations but removed the zero operation when selecting the
final architecture to evaluate in stages (2) and (3). For our random search with weight-sharing, we decided to
exclude the zero operation for both search and evaluation.

Stage 3 Procedure. For stage (3) evaluation, we follow the ArXiv version of DARTS [32], which
reported two sets of results, one after training for 1600 epochs and another fine tuned result after training
for an additional 1000 epochs. In the ICLR version, Liu et al. [33] simply say they trained the final network
to convergence. We trained for another 1000 epochs for a total of 3600 epochs to approximate training to
convergence.

We next present the final search results. We subsequently explore the impact of various meta-hyperparameters
on random search with weight-sharing, and finally evaluate the reproducibility of various methods on this
benchmark.

16

RANDOM SEARCH AND NAS

A.5.1 FINAL SEARCH RESULTS

We now present our final evaluation results in Table 5. Specifically, we report the output of stage (3), in which
we train the proxyless network configured according to the best architectures found by different methods
for 3600 epochs. We discuss various aspects of these results in the context of the three issues—baselines,
complex methods, reproducibility—introduced in Section 1.

Table 5: PTB Benchmark: Comparison with state-of-the-art NAS methods and manually designed
networks. Lower test perplexity is better on this benchmark. The results are grouped by those for manually
designed networks, published NAS methods, and the methods that we evaluated. Table entries denoted by "-"
indicate that the field does not apply, while entries denoted by "N/A" indicate unknown entries. The search
cost, unless otherwise noted, is measured in GPU days. Note that the search cost is hardware dependent
and the search cost shown for our results are calculated for Tesla P100 GPUs; all other numbers are those
reported by Liu et al. [33].
Search cost is in CPU-days.
∗ We could not reproduce this result using the code released by the authors at https://github.com/
melodyguan/enas.
† The stage (1) cost shown is that for 1 trial as opposed to the cost for 4 trials shown for DARTS and Random
search WS. It is unclear whether ENAS requires multiple trials followed by stage (2) evaluation in order to
find a good architecture.

Test Perplexity Params Search Cost Comparable Search
Architecture Source Valid Test (M) Stage 1 Stage 2 Total Search Space? Method
LSTM + DropConnect [37] 60.0 57.3 24 - - - - manual
ASHA + LSTM + DropConnect [29] 58.1 56.3 24 - - 13 N HP-tuned
LSTM + MoS [48] 56.5 54.4 22 - - - - manual
NAS# [50] N/A 64.0 25 - - 1e4 N RL
ENAS∗† [40] N/A 56.3 24 0.5 N/A N/A Y RL
ENAS† [33] 60.8 58.6 24 0.5 N/A N/A Y random
Random search baseline [33] 61.8 59.4 23 - - 2 Y random
DARTS (first order) [33] 60.2 57.6 23 0.5 1 1.5 Y gradient-based
DARTS (second order) [33] 58.1 55.7 23 1 1 2 Y gradient-based
DARTS (second order) Ours 58.2 55.9 23 1 1 2 Y gradient-based
ASHA baseline Ours 58.6 56.4 23 - - 2 Y random
Random search WS Ours 57.8 55.5 23 0.25 1 1.25 Y random

First, we evaluate the ASHA baseline using 2 GPU days, which is equivalent to the total cost of DARTS
(second order). In contrast to the one random architecture evaluated by Pham et al. [40] and the 8 evaluated
by Liu et al. [33] for their random search baselines, ASHA evaluated over 300 architectures with the
allotted computation time. The best architecture found by ASHA achieves a test perplexity of 56.4, which is
comparable to the published result for ENAS and significantly better than the random search baseline provided
by Liu et al. [33], DARTS (first order), and the reproduced result for ENAS [33]. Our result demonstrates
that the gap between SOTA NAS methods and standard hyperparameter optimization approaches on the PTB
benchmark is significantly smaller than that suggested by the existing comparisons to random search [40; 33].

Next, we evaluate random search with weight-sharing with tuned meta-hyperparameters (see Ap-
pendix A.5.2 for details). With slightly lower search cost than DARTS, this method finds an architecture
that reaches test perplexity 55.5, achieving SOTA perplexity compared to previous NAS approaches. We
note that manually designed architectures are competitive with RNN cells designed by NAS methods on this
benchmark. In fact, the work by Yang et al. [48] using LSTM with mixture of experts in the softmax layer
(MoS) outperforms automatically designed cells. Our architecture would likely also improve significantly
with MoS, but we train without MoS to provide a fair comparison to ENAS and DARTS.

17

https://github.com/melodyguan/enas
https://github.com/melodyguan/enas

LI AND TALWALKAR

Finally, we examine the reproducibility of the NAS methods with available code for both architecture
search and evaluation. For DARTS, exact reproducibility was not feasible since Liu et al. [33] do not provide
random seeds for the search process; however, we were able to reproduce the performance of their reported
best architecture. We also evaluated the broad reproducibility of DARTS through an independent run, which
reached a test perplexity of 55.9, compared to the published value of 55.7. For ENAS, end-to-end exact
reproducibility was infeasible due to non-deterministic code and missing random seeds for both the search and
evaluation steps. Additionally, when we tried to reproduce their result using the provided final architecture,
we could not match the reported test perplexity of 56.3 in our rerun. Consequently, in Table 5 we show the
test perplexity for the final architecture found by ENAS trained using the DARTS code base, which Liu
et al. [33] observed to give a better test perplexity than using the architecture evaluation code provided by
ENAS. We next considered the reproducibility of random search with weight-sharing. We verified the exact
reproducibility of our reported results, and then investigated their broad reproducibility by running another
experiment with different random seeds. In this second experiment, we observed a final text perplexity of
56.5, compared with a final test perplexity of 55.5 in the first experiment. Our detailed investigation in
Appendix A.5.3 shows that the discrepancies across both DARTS and random search with weight-sharing are
unsurprising in light of the differing convergence rates among architectures on this benchmark.

A.5.2 IMPACT OF META-HYPERPARAMETERS

We now detail the meta-hyperparameter settings that we tried for random search with weight-sharing in order
to achieve SOTA performance on the PTB benchmark. Similar to DARTS, in these preliminary experiments
we performed 4 separate trials of each version of random search with weight-sharing, where each trial consists
of executing stage (1) followed by stage (2). In stage (1), we train the shared weights and then use them
to evaluate 2000 randomly sampled architectures. In stage (2), we select the best architecture out of 2000,
according to the shared weights, to train from scratch using the proxyless network for 300 epochs.

We incrementally tune random search with weight-sharing by adjusting the following meta-hyperparameters
associated with training the shared weights in stage (1): (1) gradient clipping, (2) batch size, and (3) network
size. The settings we consider proceed as follows:

Random (1): We train the shared weights of the proxy network using the same setup as DARTS with the
same values for number of epochs, batch size, and gradient clipping; all other meta-hyperparameters are the
same.

Random (2): We decrease the maximum gradient norm to account for discrete architectures, as opposed
to the weighted combination used by DARTS, so that gradient updates are not as large in each direction.

Random (3): We decrease batch size from 256 to 64 in order to increase the number of architectures
used to train the shared weights.

Random (4): We train the larger proxyless network architecture with shared weights instead of the proxy
network, thereby significantly increasing the number of parameters in the model.

The stage (2) performance of the final architecture after retraining from scratch for each of these settings
is shown in Table 6. With the extra capacity in the larger network used in Random (4), random search with
weight-sharing achieves average validation perplexity of 64.7 across 4 trials, with the best architecture (shown
in Figure 2 in Appendix A.3) reaching 63.8. In light of these stage (2) results, we focused in stage (3) on the
best architecture found by Random (4) Run 1, and achieved test perplexity of 55.5 after training for 3600
epochs as reported in Table 5.

A.5.3 INVESTIGATING REPRODUCIBILITY

We next examine the stage (2) intermediate results in Table 6 in the context of reproducibility. The first two
rows of Table 6 show a comparison of the published stage (2) results for DARTS and our independent runs of
DARTS. Both the best and average across 4 trials are worse in our reproduction of their results. Additionally,

18

RANDOM SEARCH AND NAS

Table 6: PTB Benchmark: Comparison of Stage (2) Intermediate Search Results for Weight-Sharing
Methods. In stage (1), random search is run with different settings to train the shared weights. The resulting
networks are used to evaluate 2000 randomly sampled architectures. In stage (2), the best of these architectures
for each trial is then trained from scratch for 300 epochs. We report the performance of the best architecture
after stage (2) across 4 trials for each search method.

Setting
Network Batch Gradient Trial

Method Config Epochs Size Clipping 1 2 3 4 Best Average
DARTS [33] proxy 50 256 0.25 67.3 66.3 63.4 63.4 63.4 65.1
Reproduced DARTS proxy 50 256 0.25 64.5 67.7 64.0 67.7 64.0 66.0
Random (1) proxy 50 256 0.25 65.6 66.3 66.0 65.6 65.6 65.9
Random (2) proxy 50 256 0.1 65.8 67.7 65.3 64.9 64.9 65.9
Random (3) proxy 50 64 0.1 66.1 65.0 64.9 64.5 64.5 65.1
Random (4) Run 1 proxyless 50 64 0.1 66.3 64.6 64.1 63.8 63.8 64.7
Random (4) Run 2 proxyless 50 64 0.1 63.9 64.8 66.3 66.7 63.9 65.4

Table 7: PTB Benchmark: Ranking of Intermediate Validation Perplexity. Architectures are retrained
from scratch using the proxyless network and the validation perplexity is reported after training for the
indicated number of epochs. The final test perplexity after training for 3600 epochs is also shown for
reference.

Validation Perplexity by Epoch Test
300 500 1600 2600 3600 Perplexity

Search Method Value Rank Value Rank Value Rank Value Rank Value Rank Value Rank
DARTS 64.0 4 61.9 2 59.5 2 58.5 2 58.2 2 55.9 2
ASHA 63.9 2 62.0 3 59.8 4 59.0 3 58.6 3 56.4 3

Random (4) Run 1 63.8 1 61.7 1 59.3 1 58.4 1 57.8 1 55.5 1
Random (4) Run 2 63.9 2 62.1 4 59.6 3 59.0 3 58.8 4 56.5 4

as previously mentioned, we perform an additional run of Random (4) with 4 different random seeds to test
the broad reproducibility our result. The minimum stage (2) validation perplexity over these 4 trials is 63.9,
compared to a minimum validation perplexity of 63.8 for the first set of seeds.

Next, in Table 7 we compare the validation perplexities of the best architectures from ASHA, Random
(4) Run 1, Random (4) Run 2, and our independent run of DARTS after training each from scratch for up
to 3600 epochs. The swap in relative ranking across epochs demonstrates the risk of using noisy signals
for the reward. In this case, we see that even partial training for 300 epochs does not recover the correct
ranking; training using shared weights further obscures the signal. The differing convergence rates explain
the difference in final test perplexity of the best architecture from Random (4) Run 2 and those from DARTS
and Random (4) Run 1, despite Random (4) Run 2 reaching a comparable perplexity after 300 epochs.

Overall, the results of Tables 6 and 7 demonstrate a high variance in the stage (2) intermediate results
across trials, along with issues related to differing convergence rates for different architectures. These
two issues help explain the differences between the independent runs of DARTS and random search with
weight-sharing. A third potential source of variation, which could in particular adversely impact our random
search with weight-sharing results, stems from the fact that we did not perform any additional hyperparameter
tuning in stage (3); instead we used the same training hyperparameters that were tuned by Liu et al. [33] for
the final architecture found by DARTS.

19

LI AND TALWALKAR

A.6 Available Code

Unless otherwise noted, our results are exactly reproducible from architecture search to final evaluation using
the code available at https://github.com/liamcli/randomNAS_release. The code we use
for random search with weight-sharing on both benchmarks is deterministic conditioned on a fixed random
seed. We provide the final architectures used for each of the trials shown in the tables above, as well as the
random seeds used to find those architectures. In addition, we perform no additional hyperparameter tuning
for final architectures and only tune the meta-hyperparameters according to the discussion in the text itself.
We also provide code, final architectures, and random seeds used for our experiments using ASHA. However,
we note that there is one uncontrolled source of randomness in our ASHA experiments—in the distributed
setting, the asynchronous nature of the algorithm means that the results depend on the order in which different
architectures finish (partially) training. Lastly, our experiments were conducted using Tesla P100 and V100
GPUs on Google Cloud. We convert GPU time on V100 to equivalent time on P100 by applying a multiple
of 1.5.

20

https://github.com/liamcli/randomNAS_release

	Introduction
	Experiments
	CIFAR-10 Benchmark
	Final Search Results
	Impact of Meta-Hyperparameters
	Investigating Reproducibility

	Appendix
	Background
	Related Work
	Inadequate Baselines
	Complex Methods
	Lack of Reproducibility

	Random Search with Weight-Sharing
	Relevant Meta-Hyperparameters

	CIFAR-10 Benchmark
	PTB Benchmark
	Final Search Results
	Impact of Meta-Hyperparameters
	Investigating Reproducibility

	Available Code

