Automated Machine Learning (AutoML): A Tutorial

Matthias Feurer
University of Freiburg
feurerm@cs.uni-freiburg.de
@__mfeurer__

Frank Hutter
University of Freiburg & Bosch
fh@cs.uni-freiburg.de
@FrankRHutter

@automlfreiburg

Tutorial based on Chapters 1-3 of the book Automated Machine Learning
Slides and video available at automl.org/events/tutorials
(all references are clickable links)
Outline

Part 1: General AutoML (Matthias)
1. AutoML by Hyperparameter Optimization
2. Black-box Hyperparameter Optimization
3. Beyond black-box optimization
4. Examples of AutoML
5. Wrap-up & Conclusion

Part 2: Neural Architecture Search (Frank)
1. Search Spaces
2. Black-box Optimization
3. Beyond Black-box Optimization
4. Best Practices
Deep Learning and AutoML

Current deep learning practice

Expert chooses architecture & hyperparameters → Deep learning “end-to-end”

AutoML: true end-to-end learning

Meta-level learning & optimization → Learning box
Neural Architecture Search - Motivation

Bigger, more complex architectures...

[Canziani et al., preprint 2017]

[Inception-V4 modules]

[Feurer and Hutter: AutoML]
Can we automatically design neural network architectures?
Yes, we can – and NAS has become a hot topic!

Neural Architecture Search: A Survey

Thomas Elsken
Bosch Center for Artificial Intelligence
71272 Renningen, Germany
and University of Freiburg

Jan Hendrik Metzen
Bosch Center for Artificial Intelligence
71272 Renningen, Germany

Frank Hutter
University of Freiburg
79110 Freiburg, Germany

Number of NAS papers written

- 2015
- 2016
- 2017
- 2018

Feurer and Hutter: AutoML
Outline

Part 2: Neural Architecture Search

1. Search Spaces
2. Black-box Optimization
3. Beyond Black-box Optimization
4. Best Practices

Based on: Elsken, Metzen and Hutter
[Neural Architecture Search: a Survey, JMLR 2019; also Chapter 3 of the AutoML book]
Basic Neural Architecture Search Spaces

Chain-structured space (different colours: different layer types)

More complex space with multiple branches and skip connections

[Feurer and Hutter: AutoML]
Cell Search Spaces

Introduced by Zoph et al. [CVPR 2018]

Two possible cells

normal cell: preserves spatial resolution

reduction cell: reduces spatial resolution

Architecture composed of stacking together individual cells
Part 2: Neural Architecture Search

1. Search Spaces
2. Black-box Optimization
3. Beyond Black-box Optimization
4. Best Practices

Based on: Elsken, Metzen and Hutter
[Neural Architecture Search: a Survey, JMLR 2019; also Chapter 3 of the AutoML book]
NAS with Reinforcement Learning [Zoph & Le, ICLR 2017]

- State-of-the-art results for CIFAR-10, Penn Treebank
- Large computational demands:
 800 GPUs for 3-4 weeks, 12,800 architectures trained
NAS with Reinforcement Learning

- Architecture of neural network represented as string e.g., [“filter height: 5”, “filter width: 3”, “# of filters: 24”]
- Controller (RNN) generates string that represents architecture

[Zoph & Le, ICLR 2017]
NAS as Hyperparameter Optimization

- Architecture of neural network represented as string e.g., [“filter height: 5”, “filter width: 3”, “# of filters: 24”]
- We can simply treat these as categorical parameters
 - E.g., 25 cat. parameters for each of the 2 cells in Zoph et al [CVPR 2018]
NAS with Evolution

- **Neuroevolution**
 (already since the 1990s [Angeline et al., 1994; Stanley and Miikkulainen, 2002])
 - Mutation steps, such as adding, changing or removing a layer
 [Real et al., ICML 2017; Miikkulainen et al., arXiv 2017]
RL vs. Evolution vs. Random Search

during architecture search

[Real et al., AAAI 2019]

final evaluation

[Real et al., AAAI 2019]
Bayesian Optimization

- Joint optimization of a vision architecture with 238 hyperparameters with TPE [Bergstra et al, ICML 2013]

- Auto-Net
 - Joint architecture and hyperparameter search with SMAC
 - First Auto-DL system to win a competition dataset against human experts [Mendoza et al, AutoML 2016]

- Kernels for GP-based NAS
 - Arc kernel [Swersky et al, BayesOpt 2013]
 - NASBOT [Kandasamy et al, NIPS 2018]

- Sequential model-based optimization
 - PNAS [Liu et al, ECCV 2018]
Blackbox methods require a lot of compute (CIFAR-10)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Error (%)</th>
<th>Params (Millions)</th>
<th>GPU Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoph and Le (2017)</td>
<td>3.65</td>
<td>37.4</td>
<td>22,400</td>
</tr>
<tr>
<td>Zoph et al. (2018)</td>
<td>3.41</td>
<td>3.3</td>
<td>2,000</td>
</tr>
<tr>
<td>Real et al. (2017)</td>
<td>5.40</td>
<td>5.4</td>
<td>2,600</td>
</tr>
<tr>
<td>Real et al. (2019)</td>
<td>3.34</td>
<td>3.2</td>
<td>3,150</td>
</tr>
</tbody>
</table>

[Wistuba et al., preprint 2019]
Table with exhaustive evaluations of a small search space

- Enables evaluating a NAS method in minutes on a laptop
- Enables proper scientific research: multiple runs, robustness studies, etc
- Fair head-to-head evaluations by design (fixed final evaluation pipeline & hyperparameters)
- Of course, source code and scripts are available

423k cell architectures evaluated on CIFAR-10

- Only possible with Google resources (4.000 TPUs for months)
- One-time cost already far more than amortized

[Ying et al., ICML 2019]
NAS-Bench-101: Comparison of Optimizers

Feurer and Hutter: AutoML
Still, blackbox optimization is expensive! Can we do better?
Part 2: Neural Architecture Search

1. Search Spaces
2. Black-box Optimization
3. Beyond Black-box Optimization
4. Best Practices

Based on: Elsken, Metzen and Hutter
[Neural Architecture Search: a Survey, JMLR 2019; also Chapter 3 of the AutoML book]
Main approaches for making NAS efficient

- Meta-learning [Wong et al, NeurIPS 2018]

- Weight inheritance & network morphisms

- Weight sharing & one-shot models
Network morphisms [Chen et al., 2016; Wei et al., 2016]

- Change the network structure, but not the modelled function (i.e., for every input, the network yields the same output as before applying the network morphism)

- Can use this in NAS algorithms as operations to generate new networks
- Avoids costly training from scratch
Network morphism example

We have trained a network

$$N_1(x) = \text{Softmax}_{w_{1,1}} \circ \text{ReLU} \circ \text{Conv}_{w_{1,2}}(x)$$

... and want to add another Relu-Conv block

$$N_2(x) = \text{Softmax}_{w_{2,1}} \circ \text{ReLU} \circ \text{Conv}_{w_{2,2}} \circ \text{ReLU} \circ \text{Conv}_{w_{2,3}}(x)$$

copy

$$w_{2,1} = w_{1,1}, \quad w_{2,3} = w_{1,2}$$

and set $$w_{2,2}$$ so that $$\text{Conv}_{w_{2,2}}(x) = x$$

Then:

$$N_2(x) = \text{Softmax}_{w_{2,1}} \circ \text{ReLU} \circ \text{Conv}_{w_{2,2}} \circ \text{ReLU} \circ \text{Conv}_{w_{2,3}}(x)$$

$$= \text{Softmax}_{w_{1,1}} \circ \text{ReLU} \circ \text{Conv}_{w_{2,2}} \circ \text{ReLU} \circ \text{Conv}_{w_{1,2}}(x) \quad \text{// copy weights}$$

$$= \text{Softmax}_{w_{1,1}} \circ \text{ReLU} \circ \text{Id} \circ \text{ReLU} \circ \text{Conv}_{w_{1,2}}(x) \quad \text{// chose } w_{2,2} \text{ to be Id}$$

$$= \text{Softmax}_{w_{1,1}} \circ \text{ReLU} \circ \text{Conv}_{w_{1,2}}(x) \quad \text{// ReLU is idempotent}$$

$$= N_1(x)$$

More details in our blog post.
Weight inheritance & network morphisms in NAS

[Cai et al, AAAI 2018; Elsken et al, NeurIPS MetaLearn 2017; Cortes et al, ICML 2017; Cai et al, ICML 2018; Elsken et al, ICLR 2019]

→ enables efficient architecture search
Multi-objective NAS: LEMONADE

- Multi-objective evolutionary method
- Objectives such as accuracy, # parameters, # flops, latency
- Outputs Pareto-front wrt. multiple objectives
- No need to specify tradeoff between objectives a-priori

[Elkens et al., ICLR 2019, blog post]
Some numbers (CIFAR-10)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Error (%)</th>
<th>Params (Millions)</th>
<th>GPU Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker et al. (2017)</td>
<td>6.92</td>
<td>11.18</td>
<td>100</td>
</tr>
<tr>
<td>Zoph and Le (2017)</td>
<td>3.65</td>
<td>37.4</td>
<td>22,400</td>
</tr>
<tr>
<td>Cai et al. (2018a)</td>
<td>4.23</td>
<td>23.4</td>
<td>10</td>
</tr>
<tr>
<td>Zoph et al. (2018)</td>
<td>3.41</td>
<td>3.3</td>
<td>2,000</td>
</tr>
<tr>
<td>Zoph et al. (2018) + Cutout</td>
<td>2.65</td>
<td>3.3</td>
<td>2,000</td>
</tr>
<tr>
<td>Zhong et al. (2018)</td>
<td>3.54</td>
<td>39.8</td>
<td>96</td>
</tr>
<tr>
<td>Cai et al. (2018b)</td>
<td>2.99</td>
<td>5.7</td>
<td>200</td>
</tr>
<tr>
<td>Cai et al. (2018b) + Cutout</td>
<td>2.49</td>
<td>5.7</td>
<td>200</td>
</tr>
<tr>
<td>Real et al. (2017)</td>
<td>5.40</td>
<td>5.4</td>
<td>2,600</td>
</tr>
<tr>
<td>Xie and Yuille (2017)</td>
<td>5.39</td>
<td>N/A</td>
<td>17</td>
</tr>
<tr>
<td>Suganuma et al. (2017)</td>
<td>5.98</td>
<td>1.7</td>
<td>14.9</td>
</tr>
<tr>
<td>Liu et al. (2018b)</td>
<td>3.75</td>
<td>15.7</td>
<td>300</td>
</tr>
<tr>
<td>Real et al. (2019)</td>
<td>3.34</td>
<td>3.2</td>
<td>3,150</td>
</tr>
<tr>
<td>Elskens et al. (2018)</td>
<td>5.2</td>
<td>19.7</td>
<td>1</td>
</tr>
<tr>
<td>Wistuba (2018a) + Cutout</td>
<td>3.57</td>
<td>5.8</td>
<td>0.5</td>
</tr>
</tbody>
</table>

NAS with weight inher. / network morphisms

[Wistuba et al., preprint 2019]
Weight Sharing & One-shot Models

- Embed architectures from search space into single network, the „one-shot model“
- Each path through the one-shot model is an architecture
- Only need a single training of the one-shot model
- Weights are shared across architectures embedded in one-shot model

Figure: embeddings of two 7-layer CNNs (red, green) [Saxena & Verbeek, NeurIPS 2016]

Problems/ limitations:
- Search space restricted to one-shot model
- One-shot model needs to be kept in GPU-memory
- Search bias?
Weight Sharing & One-shot Models

- **Simplifying One-Shot Architecture Search**
 [Bender et al., ICML 2018]
 - Use path dropout to make sure the individual models perform well by themselves

- **ENAS** [Pham et al., ICML 2018]
 - Use RL to sample paths (=architectures) from one-shot model

- **SMASH** [Brock et al., MetaLearn 2017]
 - Train hypernetwork that generates weights of models
DARTS: Differentiable Architecture Search

- Relax the discrete NAS problem (a->b)
 - One-shot model with continuous architecture weight α for each operator
 - Mixed operator:
 $$\bar{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha^{(i,j)}_o)}{\sum_{o' \in \mathcal{O}} \exp(\alpha^{(i,j)}_{o'})} o(x)$$

- Solve a bi-level optimization problem (c)
 $$\min_{\alpha} \mathcal{L}_{val}(w^*(\alpha), \alpha)$$
 $$\text{s.t. } w^*(\alpha) = \arg\min_w \mathcal{L}_{train}(w, \alpha)$$

- In the end, discretize to obtain a single architecture (d)
DARTS: Differentiable Architecture Search

- **Very fast:**
 - By alternating SGD steps for α and w
 - Runtime only a bit higher than SGD for w alone

- **Very brittle optimization:**
 - Requires hyperparameter tuning for new problems
 - Discretization in step (d) can deteriorate performance a lot

- One-shot model needs to fit into GPU memory

- Already lots of follow-up work to solve these problems

[Xie et al., ICLR 2019, Cai et al., ICLR 2019, Dong et al., CVPR 2019, Zela et al, arXiv 2019]
<table>
<thead>
<tr>
<th>Reference</th>
<th>Error (%)</th>
<th>Params (Millions)</th>
<th>GPU Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoph and Le (2017)</td>
<td>3.65</td>
<td>37.4</td>
<td>22,400</td>
</tr>
<tr>
<td>Cai et al. (2018a)</td>
<td>4.23</td>
<td>23.4</td>
<td>10</td>
</tr>
<tr>
<td>Zoph et al. (2018)</td>
<td>3.41</td>
<td>3.3</td>
<td>2,000</td>
</tr>
<tr>
<td>Zoph et al. (2018) + Cutout</td>
<td>2.65</td>
<td>3.3</td>
<td>2,000</td>
</tr>
<tr>
<td>Cai et al. (2018b)</td>
<td>2.99</td>
<td>5.7</td>
<td>200</td>
</tr>
<tr>
<td>Cai et al. (2018b) + Cutout</td>
<td>2.49</td>
<td>5.7</td>
<td>200</td>
</tr>
<tr>
<td>Real et al. (2017)</td>
<td>5.40</td>
<td>5.4</td>
<td>2,600</td>
</tr>
<tr>
<td>Liu et al. (2018b)</td>
<td>3.75</td>
<td>15.7</td>
<td>300</td>
</tr>
<tr>
<td>Real et al. (2019)</td>
<td>3.34</td>
<td>3.2</td>
<td>3,150</td>
</tr>
<tr>
<td>Elsken et al. (2018)</td>
<td>5.2</td>
<td>19.7</td>
<td>1</td>
</tr>
<tr>
<td>Wistuba (2018a) + Cutout</td>
<td>3.57</td>
<td>5.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Pham et al. (2018)</td>
<td>3.54</td>
<td>4.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Pham et al. (2018) + Cutout</td>
<td>2.89</td>
<td>4.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Bender et al. (2018)</td>
<td>4.00</td>
<td>5.0</td>
<td>N/A</td>
</tr>
<tr>
<td>Casale et al. (2019) + Cutout</td>
<td>2.81</td>
<td>3.7</td>
<td>1</td>
</tr>
<tr>
<td>Liu et al. (2019b) + Cutout</td>
<td>2.76</td>
<td>3.3</td>
<td>4</td>
</tr>
<tr>
<td>Xie et al. (2019b) + Cutout</td>
<td>2.85</td>
<td>2.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Cai et al. (2019) + Cutout</td>
<td>2.08</td>
<td>5.7</td>
<td>8.33</td>
</tr>
<tr>
<td>Brock et al. (2018)</td>
<td>4.03</td>
<td>16.0</td>
<td>3</td>
</tr>
<tr>
<td>Zhang et al. (2019)</td>
<td>2.84</td>
<td>5.7</td>
<td>0.84</td>
</tr>
<tr>
<td>Liu et al. (2018b)</td>
<td>3.91</td>
<td>N/A</td>
<td>300</td>
</tr>
<tr>
<td>Luo et al. (2018)</td>
<td>3.92</td>
<td>3.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Liu et al. (2019b) + Cutout</td>
<td>3.29</td>
<td>3.2</td>
<td>4</td>
</tr>
<tr>
<td>Li and Talwalkar (2019) + Cutout</td>
<td>2.85</td>
<td>4.3</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Application of DARTS: Semantic Segmentation
Application of DARTS: Semantic Segmentation

- Auto-DeepLab [Liu et al., CVPR 2019]
 - Also optimize downsampling factor for each layer
 - 3 GPU days search on Cityscapes
 - Based on DARTS

Optimized:
(3 GPU days search on Cityscapes)
Application of DARTS: Disparity Estimation

imageL

imageR

DispNet-CSS

AutoDispNet-CSS

Feurer and Hutter: AutoML
AutoDispNet [Saikia et al., ICCV 2019]

- Introduce upsampling cells in addition to normal and reduction cells to allow for encoder-decoder architectures
- Supports U-Net like encoder-decoder architectures

- NAS with DARTS, then HPO with BOHB
- Better performance than human domain experts
 - E.g., EPE on Sintel: 2.36 -> 2.14 (NAS) -> 1.94 (NAS+HPO)
Part 2: Neural Architecture Search

1. Search Spaces
2. Black-box Optimization
3. Beyond Black-box Optimization
4. Best Practices
Reproducibility

- Many ML methods are not very reproducible
- NAS research is particularly hard to reproduce

Fair comparisons of NAS methods

- Using the same NAS Benchmarks
- Definition: NAS Benchmark
 - Dataset (with predefined train/test split)
 - Search space
 - Available code with fixed hyperparameters for training final architecture

Reporting important details

- Hyperparameter optimization can drastically improve results
Different code for training networks (often unavailable)

- Performance hugely affected by cutout, Auto-Augment, mixup, scheduled drop-path, cosine annealing, etc

- Different search spaces
- Different evaluation schemes
- No repeated runs
The NAS Best Practices Checklist (version 1.0, September 6, 2019)
by Marius Lindauer and Frank Hutter

Best practices for releasing code

For all experiments you report, check if you released:

☐ Code for the training pipeline used to evaluate the final architectures
☐ Code for the search space
☐ The hyperparameters used for the final evaluation pipeline, as well as random seeds
☐ Code for your NAS method
☐ Hyperparameters for your NAS method, as well as random seeds

Note that the easiest way to satisfy the first three of these is to use existing NAS benchmarks, rather than changing them or introducing new ones.
Best practices for comparing NAS methods

- For all NAS methods you compare, did you use exactly the same NAS benchmark, including the same dataset (with the same training-test split), search space and code for training the architectures and hyperparameters for that code?
- Did you control for confounding factors (different hardware, versions of DL libraries, different runtimes for the different methods)?
- Did you run ablation studies?
- Did you use the same evaluation protocol for the methods being compared?
- Did you compare performance over time?
- Did you compare to random search?
- Did you perform multiple runs of your experiments and report seeds?
- Did you use tabular or surrogate benchmarks for in-depth evaluations?
Best practices for reporting important details

☐ Did you report how you tuned hyperparameters, and what time and resources this required?

☐ Did you report the time for the entire end-to-end NAS method (rather than, e.g., only for the search phase)?

☐ Did you report all the details of your experimental setup?
Need for more good NAS Benchmarks

- Only experiments on the same benchmarks are comparable
- Have we overfit on CIFAR-10 and PTB?
- By now, lots of non-standard applications of NAS, e.g., semantic segmentation, disparity estimation, reinforcement learning, machine translation, GANs, image restoration, etc.

Need for an open-source library of NAS methods

- To avoid confounding factors & understand the true causes of good and bad performance on a NAS benchmark
- To be able to mix & match components of different algorithms
- We’re developing NASlib and Auto-PyTorch
Part 2: Neural Architecture Search

1. Search Spaces
2. Black-box Optimization
3. Beyond Black-box Optimization
4. Best Practices

- NAS is key for new application areas of deep learning
- By now, NAS is a topic all of academia can partake in
- NAS & HPO are both important for strong performance