

Automated Machine Learning (AutoML): A Tutorial

Matthias Feurer

University of Freiburg feurerm@cs.uni-freiburg.de

Thomas Elsken

Bosch Center for Artificial Intelligence & University of Freiburg Thomas.Elsken@de.bosch.com

@automlfreiburg

Slides based on material from Frank Hutter and Joaquin Vanschoren
Tutorial based on Chapters 1-3 of the book <u>Automated Machine Learning</u>
Slides available at <u>automl.org/events/tutorials</u> -> AutoML Tutorial

(all references are clickable links)

Motivation: Successes of Deep Learning

Speech recognition

Computer vision in self-driving cars

Reasoning in games

One Problem of Deep Learning

Performance is very sensitive to many hyperparameters

Architectural hyperparameters

One Problem of Deep Learning

Performance is very sensitive to many hyperparameters

Architectural hyperparameters

 Optimization algorithm, learning rates, momentum, batch normalization, batch sizes, dropout rates, weight decay, data augmentation, ...

Easily 20-50 design decisions

Current deep learning practice

Expert chooses architecture & hyperparameters

Deep learning "end-to-end"

Current deep learning practice

Current deep learning practice

Expert chooses architecture & hyperparameters

Deep learning "end-to-end"

AutoML: true end-to-end learning

End-to-end learning

Current deep learning practice

AutoML: true end-to-end learning

Learning box is not restricted to deep learning

- Traditional machine learning pipeline:
 - Clean & preprocess the data
 - Select / engineer better features
 - Select a model family
 - Set the hyperparameters
 - Construct ensembles of models
 - **—** ...

AutoML: true end-to-end learning

Outline

- Part 1: General AutoML (by me, now)
- 1. AutoML by Hyperparameter Optimization
- 2. Black-box Hyperparameter Optimization
- 3. Beyond black-box optimization
- 4. Meta-learning
- 5. Examples of AutoML
- 6. Open issues and future work
- 7. Wrap-up & Conclusion
- Part 2: Neural Architecture Search & Meta-Learning (by Thomas Elsken, after the break)

Outline

Part 1: General AutoML

- 1. AutoML by Hyperparameter Optimization
- 2. Black-box Hyperparameter Optimization
- 3. Beyond black-box optimization
- 4. Meta-learning
- 5. Examples of AutoML
- 6. Open issues and future work
- 7. Wrap-up & Conclusion
- Part 2: Neural Architecture Search & Meta-Learning

Hyperparameter Optimization

Definition: Hyperparameter Optimization (HPO)

Let

- ullet λ be the hyperparameters of a ML algorithm A with domain Λ ,
- $\mathcal{L}(A_{\lambda}, D_{train}, D_{valid})$ denote the loss of A, using hyperparameters λ trained on D_{train} and evaluated on D_{valid} .

The hyperparameter optimization (HPO) problem is to find a hyperparameter configuration λ^* that minimizes this loss:

$$\lambda^* \in \operatorname*{arg\,min}_{\lambda \in \Lambda} \mathcal{L}(A_{\lambda}, D_{train}, D_{valid})$$

- {SVM, RF, NN}
- Example 2: activation function ∈ {ReLU, Leaky ReLU, tanh}
- Example 3: operator ∈ {conv3x3, separable conv3x3, max pool, ...}
- Special case: binary

Continuous

Example: learning rate in NNs or GBMs

- {SVM, RF, NN}
- Example 2: activation function ∈ {ReLU, Leaky ReLU, tanh}
- Example 3: operator ∈ {conv3x3, separable conv3x3, max pool, ...}
- Special case: binary

Continuous

Example: learning rate in NNs or GBMs

Integer

Example: #units, #trees in GBM

- {SVM, RF, NN}
- Example 2: activation function ∈ {ReLU, Leaky ReLU, tanh}
- Example 3: operator ∈ {conv3x3, separable conv3x3, max pool, ...}
- Special case: binary


```
{conv3x3, separable conv3x3, max pool, ...}
{ReLU, Leaky ReLU, tanh}
{SVM, RF, NN}
```

Continuous

Example: learning rate in NNs or GBMs

Integer

Example: #units, #trees in GBM

- Categorical
 - Finite domain, unordered
 - Special case: binary
 - Example 2: activation function ∈ {ReLU, Leaky ReLU, tanh}
 - Example 3: operator ∈ {conv3x3, separable conv3x3, max pool, ...}
 - Special case: binary

Conditional hyperparameters

Conditional hyperparameters B are only active if other hyperparameters A are set a certain way

Conditional hyperparameters

Conditional hyperparameters B are only active if other hyperparameters A are set a certain way

- Example 1:
 - A = choice of optimizer (Adam or SGD)
 - B = Adam's second momentum hyperparameter (only active if A=Adam)

FREIBURG

Conditional hyperparameters

Conditional hyperparameters B are only active if other hyperparameters A are set a certain way

• Example 1:

- A = choice of optimizer (Adam or SGD)
- B = Adam's second momentum hyperparameter (only active if A=Adam)

• Example 2:

- A = number of layers in a deep neural network
- B = number of units in layer k (only active if A >= k)

FREIBURG

Conditional hyperparameters

Conditional hyperparameters B are only active if other hyperparameters A are set a certain way

• Example 1:

- A = choice of optimizer (Adam or SGD)
- B = Adam's second momentum hyperparameter (only active if A=Adam)

• Example 2:

- A = number of layers in a deep neural network
- B = number of units in layer k (only active if A >= k)

Example 3:

- A = choice of classifier (RF or SVM)
- B = SVM's kernel hyperparameter (only active if A = SVM)

AutoML as Hyperparameter Optimization

Definition: Combined Algorithm Selection and Hyperparameter Optimization (CASH)

Let

- $\mathcal{A} = \{A^{(1)}, \dots, A^{(n)}\}$ be a set of algorithms
- ullet $\Lambda^{(i)}$ denote the hyperparameter space of $A^{(i)}$, for $i=1,\ldots,n$
- $\mathcal{L}(A_{\lambda}^{(i)}, D_{train}, D_{valid})$ denote the loss of $A^{(i)}$, using $\lambda \in \Lambda^{(i)}$ trained on D_{train} and evaluated on D_{valid} .

The Combined Algorithm Selection and Hyperparameter Optimization (CASH) problem is to find a combination of algorithm $A^* = A^{(i)}$ and hyperparameter configuration $\lambda^* \in \Lambda^{(i)}$ that minimizes this loss:

$$A_{\boldsymbol{\lambda}^*}^* \in \operatorname*{arg\,min}_{A^{(i)} \in \mathcal{A}, \boldsymbol{\lambda} \in \boldsymbol{\Lambda}^{(i)}} \mathcal{L}(A_{\boldsymbol{\lambda}}^{(i)}, D_{train}, D_{valid})$$

AutoML as Hyperparameter Optimization

Illustration of the CASH problem in Auto-sklearn:

- 15 base classifiers
- Up to ten hyperparameters each
- Four levels of conditionality

AutoML as Hyperparameter optimization

Not limited to the classification algorithm:

See also Thornton et al. (KDD 2013) which introduced the CASH problem.

Outline

Part 1: General AutoML

- 1. AutoML by Hyperparameter Optimization
- 2. Black-box Hyperparameter Optimization
- 3. Beyond black-box optimization
- 4. Meta-learning
- 5. Examples of AutoML
- 6. Open issues and future work
- 7. Wrap-up & Conclusion
- Part 2: Neural Architecture Search & Meta-Learning

DNN hyperparameter setting λ Train DNN and validate it \rightarrow Validation loss $f(\lambda)$

DNN hyperparameter \rightarrow setting λ \rightarrow Validation loss $f(\lambda)$

- The blackbox function is expensive to evaluate
 - → sample efficiency is important

FREIRIRG

Grid Search and Random Search

- Both completely uninformed
- Grid search suffers from the curse of dimensionality
- Random search handles low intrinsic dimensionality better
- Example: an additive function (y = f(x) + g(x))

Feurer and Elsken: AutoML

UNI FREIBURG

Grid Search and Random Search

- Both completely uninformed
- Grid search suffers from the curse of dimensionality
- Random search handles low intrinsic dimensionality better
- Example: an additive function (y = f(x) + g(x))

Feurer and Elsken: AutoML

Acquisition Function: Expected Improvement

BURG

Bayesian Optimization

Approach

- Conduct an initial design
- Iteratively:
 - Fit a proabilistic model to the function evaluations $\langle \lambda, f(\lambda) \rangle$, most often a Gaussian process
 - Use that model to trade off Exploration vs. Exploitation in an acquisition function

Popular since Mockus [1974]

- Sample-efficient
- Works when objective is nonconvex, noisy, has unknown derivatives, etc
- Recent convergence results
 [Srinivas et al, 2010; Bull 2011; de Freitas et al, 2012; Kawaguchi et al, 2016; Nguyen et al., 2017; Berkenkamp et al., 2019]
- Excellent reviews by Shahriari et al. (IEEE, 2016) and Frazier (arXiv:1807.02811)

Example: Bayesian Optimization in AlphaGo

- During the development of AlphaGo, its many hyperparameters were tuned with Bayesian optimization multiple times.
- This automatic tuning process resulted in substantial improvements in playing strength. For example, prior to the match with Lee Sedol, we tuned the latest AlphaGo agent and this improved its win-rate from 50% to 66.5% in self-play games. This tuned version was deployed in the final match.
- Of course, since we tuned AlphaGo many times during its development cycle, the compounded contribution was even higher than this percentage.

[Chen et al., arXiv:1812.06855]

AutoML Challenges for Bayesian Optimization

- Problems for standard Gaussian Process (GP) approach:
 - Complex hyperparameter space
 - High-dimensional (low effective dimensionality) [e.g., Wang et al., 2013]
 - Mixed continuous/discrete hyperparameters [e.g., Hutter et al., 2011]
 - Conditional hyperparameters [e.g., Jenatton et al., 2017]
 - Noise: sometimes heteroscedastic, large, non-Gaussian
 - Model overhead (budget is runtime, not #function evaluations)

AutoML Challenges for Bayesian Optimization

- Problems for standard Gaussian Process (GP) approach:
 - Complex hyperparameter space
 - High-dimensional (low effective dimensionality) [e.g., Wang et al., 2013]
 - Mixed continuous/discrete hyperparameters [e.g., Hutter et al., 2011]
 - Conditional hyperparameters [e.g., Jenatton et al., 2017]
 - Noise: sometimes heteroscedastic, large, non-Gaussian
 - Model overhead (budget is runtime, not #function evaluations)
- Simple solution used in SMAC: random forests [Breiman, 2001]
 - Frequentist uncertainty estimate:
 variance across individual trees' predictions [Hutter et al, 2011]

AutoML Challenges for Bayesian Optimization

- Simple solution used in SMAC: random forests [Breiman, 2001]
 - Frequentist uncertainty estimate:
 variance across individual trees' predictions [Hutter et al, 2011]

Other methods

- than $p(y|\lambda)$

is good) and $p(\lambda)$ is bad), rather

- Two recent promising models for Bayesian optimization
 - Neural networks with Bayesian linear regression using the features in the output layer [Snoek et al, ICML 2015]
 - Fully Bayesian neural networks, trained with stochastic gradient
 Hamiltonian Monte Carlo [Springenberg et al, NIPS 2016]
 - is good) and $p(\lambda)$ is bad), rather than $p(y|\lambda)$

- $\lambda\lambda$ is bad), rather than p(y| λ)
- Two recent promising models for Bayesian optimization
 - Neural networks with Bayesian linear regression using the features in the output layer [Snoek et al, ICML 2015]
 - Fully Bayesian neural networks, trained with stochastic gradient
 Hamiltonian Monte Carlo [Springenberg et al, NIPS 2016]
- Tree Parzen Estimator [Bergstra et al., 2011]
 - Ratio is proportional to Expected Improvement

- $\lambda\lambda$ is bad), rather than p(y| λ)
- Two recent promising models for Bayesian optimization
 - Neural networks with Bayesian linear regression using the features in the output layer [Snoek et al, ICML 2015]
 - Fully Bayesian neural networks, trained with stochastic gradient
 Hamiltonian Monte Carlo [Springenberg et al, NIPS 2016]
- Tree Parzen Estimator [Bergstra et al., 2011]
 - Ratio is proportional to Expected Improvement
- Population-based methods
 - Genetic algorithms, evolutionary algorithms, evolutionary strategies, particle swarm optimization
 - Embarassingly parallel, conceptually simple

- $\lambda\lambda$ is bad), rather than p(y| λ)
- Two recent promising models for Bayesian optimization
 - Neural networks with Bayesian linear regression using the features in the output layer [Snoek et al, ICML 2015]
 - Fully Bayesian neural networks, trained with stochastic gradient
 Hamiltonian Monte Carlo [Springenberg et al, NIPS 2016]
- Tree Parzen Estimator [Bergstra et al., 2011]
 - Ratio is proportional to Expected Improvement
- Population-based methods
 - Genetic algorithms, evolutionary algorithms, evolutionary strategies, particle swarm optimization
 - Embarassingly parallel, conceptually simple
- See Chapter 1 of the AutoML book for more information.

Outline

Part 1: General AutoML

- 1. AutoML by Hyperparameter Optimization
- 2. Black-box Hyperparameter Optimization
- 3. Beyond black-box optimization
- 4. Meta-learning
- 5. Examples of AutoML
- 6. Open issues and future work
- 7. Wrap-up & Conclusion
- Part 2: Neural Architecture Search & Meta-Learning

Beyond Blackbox Hyperparameter Optimization

Beyond Blackbox Hyperparameter Optimization

Main Approaches Going Beyond Blackbox HPO

Extrapolation of learning curves

Multi-fidelity optimization

Meta-learning [next part]

Hyperparameter gradient descent [see AutoML book]

- Parametric learning curve models [Domhan et al, IJCAI 2015]
- Bayesian neural networks [Klein et al, ICLR 2017]
- Linear combination of previous curves [Chandrashekaran and Lane, ECML2017]

- Parametric learning curve models [Domhan et al, IJCAI 2015]
- Bayesian neural networks [Klein et al, ICLR 2017]
- Linear combination of previous curves [Chandrashekaran and Lane, ECML2017]

- Parametric learning curve models [Domhan et al, IJCAI 2015]
- Bayesian neural networks [Klein et al, ICLR 2017]
- Linear combination of previous curves [Chandrashekaran and Lane, ECML2017]

- Parametric learning curve models [Domhan et al, IJCAI 2015]
- Bayesian neural networks [Klein et al, ICLR 2017]
- Linear combination of previous curves [Chandrashekaran and Lane, ECML2017]

- Parametric learning curve models [Domhan et al, IJCAI 2015]
- Bayesian neural networks [Klein et al, ICLR 2017]
- Linear combination of previous curves [Chandrashekaran and Lane, ECML2017]

- Parametric learning curve models [Domhan et al, IJCAI 2015]
- Bayesian neural networks [Klein et al, ICLR 2017]
- Linear combination of previous curves [Chandrashekaran and Lane, ECML2017]

- Use cheap approximations of the blackbox, performance on which correlates with the blackbox, e.g.
 - Subsets of the data
 - Fewer epochs of iterative training algorithms (e.g., SGD)
 - Fewer trials in deep reinforcement learning
 - Downsampled images in object recognition

- Use cheap approximations of the blackbox, performance on which correlates with the blackbox, e.g.
 - Subsets of the data
 - Fewer epochs of iterative training algorithms (e.g., SGD)
 - Fewer trials in deep reinforcement learning
 - Downsampled images in object recognition
 - Also applicable in different domains, e.g., fluid simulations:
 - Less particles
 - Shorter simulations

- Make use of cheap low-fidelity evaluations
 - E.g.: subsets of the data (here: SVM on MNIST)

Make use of cheap low-fidelity evaluations

E.g.: subsets of the data (here: SVM on MNIST)

Size of subset (of MNIST)

Make use of cheap low-fidelity evaluations

E.g.: subsets of the data (here: SVM on MNIST)

Size of subset (of MNIST)

- Many cheap evaluations on small subsets
- Few expensive evaluations on the full data
- Up to 1000x speedups [Klein et al, AISTATS 2017]

Make use of cheap low-fidelity evaluations

E.g.: subsets of the data (here: SVM on MNIST)

Size of subset (of MNIST)

Make use of cheap low-fidelity evaluations

- E.g.: subsets of the data (here: SVM on MNIST) 0.0078% data 6.25% data 25% data 100% data $(0)^{0.00}$ (0

Size of subset (of MNIST)

– Fit a Gaussian process model $f(\lambda,b)$ to predict performance as a function of hyperparameters λ and budget b

Make use of cheap low-fidelity evaluations

E.g.: subsets of the data (here: SVM on MNIST)

Size of subset (of MNIST)

- Fit a Gaussian process model $f(\lambda,b)$ to predict performance as a function of hyperparameters λ and budget b
- Choose both λ and budget b to maximize "bang for the buck"

[Swersky et al, NeurIPS 2013; Swersky et al, arXiv 2014; Klein et al, AISTATS 2017; Kandasamy et al, ICML 2017]

Size of subset (of MNIST)

 Idea: Use a bandit to allocate more budget to promising configurations

- Idea: Use a bandit to allocate more budget to promising configurations
- Successive Halving [Jamieson & Talwalkar, AISTATS 2016]
 - Randomly sample N configurations & evaluate on cheapest fidelity
 - Keep the top half, double its budget (or top third, triple budget)

- Idea: Use a bandit to allocate more budget to promising configurations
- Successive Halving [Jamieson & Talwalkar, AISTATS 2016]
 - Randomly sample N configurations & evaluate on cheapest fidelity
 - Keep the top half, double its budget (or top third, triple budget)

- Idea: Use a bandit to allocate more budget to promising configurations
- Successive Halving [Jamieson & Talwalkar, AISTATS 2016]
 - Randomly sample N configurations & evaluate on cheapest fidelity
 - Keep the top half, double its budget (or top third, triple budget)

- Idea: Use a bandit to allocate more budget to promising configurations
- Successive Halving [Jamieson & Talwalkar, AISTATS 2016]
 - Randomly sample N configurations & evaluate on cheapest fidelity
 - Keep the top half, double its budget (or top third, triple budget)

- Idea: Use a bandit to allocate more budget to promising configurations
- Successive Halving [Jamieson & Talwalkar, AISTATS 2016]
 - Randomly sample N configurations & evaluate on cheapest fidelity
 - Keep the top half, double its budget (or top third, triple budget)

[Jamieson & Talwalkar, AISTATS 2016]

Hyperband (its first 4 calls to SH)

[Li et al, JMLR 2018]

[Li et al, JMLR 2018]

[Li et al, JMLR 2018]

[Li et al, JMLR 2018]

[Li et al, JMLR 2018]

Each call to Successive Halving takes roughly the same amount of wall-clock Time [s]

BOHB: Bayesian Optimization & Hyperband

[Falkner, Klein & Hutter, ICML 2018]

- Advantages of Hyperband
 - Strong anytime performance
 - General-purpose
 - Low-dimensional continuous spaces
 - High-dimensional spaces with conditionality, categorical dimensions, etc.
 - Easy to implement
 - Scalable
 - Easily parallelizable

BOHB: Bayesian Optimization & Hyperband

[Falkner, Klein & Hutter, ICML 2018]

- Advantages of Hyperband
 - Strong anytime performance
 - General-purpose
 - Low-dimensional continuous spaces
 - High-dimensional spaces with conditionality, categorical dimensions, etc.
 - Easy to implement
 - Scalable
 - Easily parallelizable
- Advantage of Bayesian optimization: strong final performance

UNI FREIBURG

BOHB: Bayesian Optimization & Hyperband

[Falkner, Klein & Hutter, ICML 2018]

- Advantages of Hyperband
 - Strong anytime performance
 - General-purpose
 - Low-dimensional continuous spaces
 - High-dimensional spaces with conditionality, categorical dimensions, etc.
 - Easy to implement
 - Scalable
 - Easily parallelizable
- Advantage of Bayesian optimization: strong final performance
- Combining the best of both worlds in BOHB
 - Bayesian optimization
 - for choosing the configurations to evaluate (using a TPE variant)
 - Hyperband
 - for deciding how to allocate budgets

Hyperband vs. Random Search

Biggest advantage: much improved anytime performance

Hyperband vs. Random Search

Biggest advantage: much improved anytime performance

Hyperband vs. Random Search

Biggest advantage: much improved anytime performance

Bayesian Optimization vs Random Search

Biggest advantage: much improved final performance

Bayesian Optimization vs Random Search

Biggest advantage: much improved final performance

Best of both worlds: strong anytime and final performance

Best of both worlds: strong anytime and final performance

Best of both worlds: strong anytime and final performance

Best of both worlds: strong anytime and final performance

Outline

Part 1: General AutoML

- 1. AutoML by Hyperparameter Optimization
- 2. Black-box Hyperparameter Optimization
- 3. Beyond black-box optimization
- 4. Meta-learning
- 5. Examples of AutoML
- 6. Open issues and future work
- 7. Wrap-up & Conclusion
- Part 2: Neural Architecture Search & Meta-Learning

Blackbox Hyperparameter Optimization

Blackbox Hyperparameter Optimization

Blackbox Hyperparameter Optimization

Analogy to manual hyperparameter optimization:

- Accumulate knowledge over time
- Use Knowledge when optimizing on a new dataset

Task-independent recommendations

- Idea: learn a sorted list of defaults
- Advantages:
 - Easy to share and use
 - Strong anytime performance
 - Embarassingly parallel
- Disadvantages:
 - Not adaptive

[Wistuba et al., 2015a,&b, Feurer et al., 2018, Pfisterer et al., 2018]

Task-independent recommendations

- Idea: learn a sorted list of defaults
- Advantages:
 - Easy to share and use
 - Strong anytime performance
 - Embarassingly parallel
- Disadvantages:
 - Not adaptive
- Method:
 - Mostly greedy

[Wistuba et al., 2015a,&b, Feurer et al., 2018, Pfisterer et al., 2018]

Task-independent recommendations

- Idea: learn a sorted list of defaults
- Advantages:
 - Easy to share and use
 - Strong anytime performance
 - Embarassingly parallel
- Disadvantages:
 - Not adaptive
- Method:
 - Mostly greedy
- Results

Improves over Random Search and Bayesian Optimization

[Wistuba et al., 2015a,&b, Feurer et al., 2018, Pfisterer et al., 2018]

Joint model for Bayesian optimization

Joint model for Bayesian optimization

- Jointly train a "deep" neural network on all tasks
- Have a separate output layer (head) for each tasks
- Each head is a Bayesian linear regression
- Feature extraction on hyperparameter configurations

[Perrone et al., NeurIPS 2018]

Joint model for Bayesian optimization

- Jointly train a "deep" neural network on all tasks
- Have a separate output layer (head) for each tasks
- Each head is a Bayesian linear regression
- Feature extraction on hyperparameter configurations

[Perrone et al., NeurIPS 2018]

Analyzing the effect of hyperparameters

- Search Space Pruning [Wistuba et al., ECMLPKDD 2015]
 - Rate all candidate configurations by their potential on past datasets
 - Drop the ones with low potential (plus some space around)

Analyzing the effect of hyperparameters

- Search Space Pruning [Wistuba et al., ECMLPKDD 2015]
 - Rate all candidate configurations by their potential on past datasets
 - Drop the ones with low potential (plus some space around)
- Hyperparameter importance [van Rijn and Hutter, KDD 2018]

Outline

Part 1: General AutoML

- 1. AutoML by Hyperparameter Optimization
- 2. Black-box Hyperparameter Optimization
- 3. Beyond black-box optimization
- 4. Meta-learning
- 5. Examples of AutoML
- 6. Open issues and future work
- 7. Wrap-up & Conclusion
- Part 2: Neural Architecture Search & Meta-Learning

What can be automated?

Image credit: Rich Caruana, AutoML 2015

Example I – Data cleaning and ingestion

- Automatically detect the dialect of CSV files [van den Burg et al., arXiv:1811.11242]
- Automatically classify data types
 [Valera and Ghahramani, ICML 2017]
- Automatically detect mistakes in the data gathering process

[Sutton et al., KDD 2018]

Check out the talk of <u>Charles Sutton@AutoML Workshop</u>
 2019

Example II – Feature Engineering

- From relational data bases:
 - Automatically aggregates information, can for example generate the average sum of orders
 - Requires post-hoc pruning of the features
 - [Kanter and Veeramachaneni, DSAA 2015]

UNI FREIBURG

Example II – Feature Engineering

- From relational data bases:
 - Automatically aggregates information, can for example generate the average sum of orders
 - Requires post-hoc pruning of the features
 - [Kanter and Veeramachaneni, DSAA 2015]

Example II – Feature Engineering

- From relational data bases:
 - Automatically aggregates information, can for example generate the average sum of orders
 - Requires post-hoc pruning of the features
 - [Kanter and Veeramachaneni, DSAA 2015]
- From featurized data:
 - Genarate candidate features by applying
 - unary (normalization, discretization, sqrt, square, log etc.)
 - binary (+,-,*,/)
 - higher order (GroupByThen)
 - Use search mechanism to perform guided exploration
 - Use feature selection to remove unnecessray features again
 - [Smith and Bull, GP&EM 2005, Katz et al., ICDM 2016]

Example III: Off-the-shelf Algorithms

- Reduce the amount of tuning:
 - Random Forests are excellent default classifiers
 - Learning rate adaption
 - rProp
 - RMSProp
 - •
 - Adam
 - ...
 - Ranger (look ahead + rectified Adam)
 - Pre-trained Neural Networks
 - Better defaults
 - **—** ...

Outline

Part 1: General AutoML

- 1. AutoML by Hyperparameter Optimization
- 2. Black-box Hyperparameter Optimization
- 3. Beyond black-box optimization
- 4. Meta-learning
- 5. Examples of AutoML
- 6. Open issues and future work
- 7. Wrap-up & Conclusion
- Part 2: Neural Architecture Search & Meta-Learning

While a commonly cited reason for the pressing need for effective and efficient data mining algorithms is the growing number of huge databases, the data mining research community almost never gets to see those databases. Most databases available for empirical studies are ridiculously small. Unless a number of realistic and big databases become publically available, the only way to fill the gap seems to be the use of artificially generated databases.

Johann Petrak, 2000

The current state:

- The current state:
 - Many image datasets available -> good for NAS

- The current state:
 - Many image datasets available -> good for NAS
 - UCI is not structured/machine readable -> bad for general AutoML

- The current state:
 - Many image datasets available -> good for NAS
 - UCI is not structured/machine readable -> bad for general AutoML
- What do we need:
 - Large real-world datasets
 - Many of them
 - Machine readable description

FREIBURG

- The current state:
 - Many image datasets available -> good for NAS
 - UCI is not structured/machine readable -> bad for general AutoML
- What do we need:
 - Large real-world datasets
 - Many of them
 - Machine readable description
- Call for contribution:
 - If you have a paper which introduces a new dataset
 - or if you have a paper which uses large datasets
 - or if you have large datasets at hand
 - ⇒ upload them to OpenML.org

OpenML.org

- Collaborative machine learning
- Share:
 - Datasets
 - Tasks
 - Runs
- APIs in Python, R and Java
- Learn more on <u>OpenML.org</u> & get involved today!

- Download:
 - >20.000 datasets
 - >90.000 tasks
 - >9.985.000 runs

[Vanschoren et al., SIGKDD 2014]

BURG

Search space representation

Bounded representation

1. Creation of bounds still requires expert knowledge

- 2. Dynamic extension possible, but not widely used [Bergstra et al., NeurIPS 2011, Shahriari et al., AISTATS 2015]
- 3. AutoML tools ship with search spaces
- 4. If you release an algorithm, also release the search space and make magic constants tunable, too [Hoos, 2012]

Pipeline construction?

See https://www.slideshare.net/JoaquinVanschoren/automl-lectures-acdl-2019

UNI FREIBURG

Overfitting

- Overfitting on HPO level possible
- Alleviate by:
 - More data [Levesque, 2018]
 - Reshuffle the train-valid split each iteration [Levesque, 2018]
 - Separate selection split [Zeng and Luo, Hiss 2017,

Mohr et al., ML 2018, Levesque, 2018]

- Stable optima [Nguyen et al., PAKDD 2017]
- Ensembling [Momma and Bennett, 2002; Escalante et al., 2009;

Bürger and Pauli, 2015; Feurer et al., 2015]

What can be automated?

Image credit: Rich Caruana, AutoML 2015

What can be automated?

Image credit: Rich Caruana, AutoML 2015

What can be automated?

Image credit: Rich Caruana, AutoML 2015

Outline

Part 1: General AutoML

- 1. AutoML by Hyperparameter Optimization
- 2. Black-box Hyperparameter Optimization
- 3. Beyond black-box optimization
- 4. Meta-learning
- 5. Examples of AutoML
- 6. Open issues and future work
- 7. Wrap-up & Conclusion

Part 2: Neural Architecture Search & Meta-Learning

HPO for Practitioners: Which Tool to Use?

If you have access to multiple fidelities

- We recommend BOHB [Falkner et al, ICML 2018]
- https://github.com/automl/HpBandSter
- Combines the advantages of Bayesian optimization and Hyperband

If you do not have access to multiple fidelities

- Low-dim. continuous: GP-based BO (e.g., <u>BoTorch</u>, <u>MLRMBO</u>, <u>Sigopt</u>, <u>GP version of SMACv3</u>)
- High-dim, categorical, conditional: SMAC or Hyperopt
- Purely continuous, budget >10x dimensionality: <u>CMA-ES</u>

UNI FREIBUR

Open-source AutoML Tools based on HPO

- Auto-WEKA [Thornton et al, KDD 2013]
 - 768 hyperparameters, 4 levels of conditionality
 - Based on WEKA and SMAC
- Hyperopt-sklearn [Komer et al, SciPy 2014]
 - Based on scikit-learn & TPE
- Auto-sklearn [Feurer al, NeurIPS 2015]
 - Based on scikit-learn & SMAC
 - Uses meta-learning and posthoc ensembling
 - Won AutoML competitions 2015-2016 & 2017-2018
- H2O AutoML [no reference]
 - Uses implementations from H2O.ai
 - Based on random search and stacking
- TPOT [Olson et al, EvoApplications 2016]
 - Based on scikit-learn and evolutionary algorithms
- ML-PLAN [Mohr et al., Machine Learning 2018]
 - Based on WEKA and Hierarchical Task Networks

AutoML: Democratization of Machine Learning

Auto-sklearn also won the last two phases of the AutoML challenge human track (!)

- It performed better than up to 130 teams of human experts
- It is open-source (BSD) and trivial to use:

AutoML: Democratization of Machine Learning

Auto-sklearn also won the last two phases of the AutoML challenge human track (!)

- It performed better than up to 130 teams of human experts
- It is open-source (BSD) and trivial to use:

```
import autosklearn.classification as cls
automl = cls.AutoSklearnClassifier()
automl.fit(X train, y train)
y hat = automl.predict(X_test)
```

automl.github.io/auto-sklearn

207

★ Star

Y Fork

731

What have we learned?

- 1. AutoML by Hyperparameter Optimization AutoML can be phrased as an HPO problem
- 2. Black-box Hyperparameter Optimization We reviewed Bayesian optimization
- 3. Beyond black-box optimization
 Practically applicable by using domain knowledge
- 4. Meta-learning Increase practicality by using previous data
- 5. Examples
 AutoML can be used in almost every step of the ML pipeline
- 6. Open issues and future work
 Datasets, search space representation & overfitting

Further reading

- Automated Machine Learning: Methods, Systems,
 Challenges
 - Edited by Frank Hutter, Lars Kotthoff and Joaquin Vanschoren
 - Contains introductions to HPO, Meta-Learning and NAS
 - https://www.springer.com/de/book/9783030053178
- Various literature reviews on arXiv:
 - 1908.05557: Focus on open source software
 - 1810.13306: General and comprehensive
 - 1908.00709: Focuses mostly on NAS
 - <u>1905.01392</u>: NAS survey
- AutoML workshop video recordings
 - icml2019.automl.org

Thank you for your attention!

Special thanks to Frank Hutter and Joaquin Vanschoren for providing me with the slides this presentation is based on.

Contact:

feurerm@cs.uni-freiburg.de

