# Neural Ensemble Search for Uncertainty Estimation and Dataset Shift

Sheheryar Zaidi<sup>1\*</sup> Arber Zela<sup>2\*</sup> Thomas Elsken<sup>2</sup>

Chris Holmes<sup>1</sup> Frank Hutter<sup>2,3</sup> Yee Whye Teh<sup>1</sup>

<sup>1</sup>University of Oxford <sup>2</sup>University of Freiburg <sup>3</sup>Bosch Center for Artificial Intelligence

February 2021





Why is uncertainty important?

• **Predictive uncertainty** can be for instance the output label together with the confidence of that prediction in classification

Why is uncertainty important?

- **Predictive uncertainty** can be for instance the output label together with the confidence of that prediction in classification
- Good uncertainty estimates quantify how much we can trust our model's predictions

Why is uncertainty important?

- **Predictive uncertainty** can be for instance the output label together with the confidence of that prediction in classification
- Good uncertainty estimates quantify how much we can trust our model's predictions





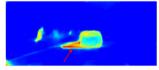


Figure: (from [llg et al. 2018]) Optical flow and its uncertainty estimation.

Why is uncertainty important?

- **Predictive uncertainty** can be for instance the output label together with the confidence of that prediction in classification
- Good uncertainty estimates quantify how much we can trust our model's predictions
- Some applications where uncertainty quantification is important are:
  - Cost-sensitive decision making (healthcare e.g. medical imaging; self-driving cars; robotics)
  - Dealing with distribution shift (Feature skew between train and test sets; test inputs do not belong to any of the training classes)
  - Safe exploration in RL, etc.

### Calibration and Robustness to dataset shift

Can we trust our model predictions?

 Ideally, a reliable model should yield maximum uncertainty when faced with an out-of-distribution (OOD) example, i.e. it knows what it doesn't know.

#### Calibration and Robustness to dataset shift

Can we trust our model predictions?

- Ideally, a reliable model should yield maximum uncertainty when faced with an out-of-distribution (OOD) example, i.e. it knows what it doesn't know.
  - Usually neural networks are not well-calibrated and overconfident when they should not be.

People with no idea about AI saying it will take over the world:

My Neural Network:



### Calibration and Robustness to dataset shift

Can we trust our model predictions?

- Ideally, a reliable model should yield maximum uncertainty when faced with an out-of-distribution (OOD) example, i.e. it knows what it doesn't know.
  - Usually neural networks are not well-calibrated and overconfident when they should not be.
- Calibration tells us how well the predicted confidence (probability of correctness) of the model aligns with the observed accuracy (frequency of correctness).
  - E.g. in classification: if the correct predicted class was always with 80% probability, then a perfectly calibrated system would imply that on 80% of the examples it predicted the true class.

Starting point

• Ensembles of networks are commonly used to boost performance.

#### Starting point

- Ensembles of networks are commonly used to boost performance.
- Recent interest in ensembles has been due to their strong *predictive uncertainty* estimation and robustness to distributional shift.

#### Starting point

- Ensembles of networks are commonly used to boost performance.
- Recent interest in ensembles has been due to their strong *predictive uncertainty* estimation and robustness to distributional shift.
- Diversity among the base learners' predictions is believed to be key for strong ensembles.

On diversity in ensembles

• Notation:  $f_{\theta}$  is a network with weights  $\theta$ , and  $\ell(f_{\theta}(\boldsymbol{x}), y)$  is the loss for  $(\boldsymbol{x}, y)$ . Define the ensemble of M networks  $f_{\theta_1}, \ldots, f_{\theta_M}$  by  $F(\boldsymbol{x}) = \frac{1}{M} \sum_{i=1}^M f_{\theta_i}(\boldsymbol{x})$ .

On diversity in ensembles

- Notation:  $f_{\theta}$  is a network with weights  $\theta$ , and  $\ell(f_{\theta}(\boldsymbol{x}), y)$  is the loss for  $(\boldsymbol{x}, y)$ . Define the ensemble of M networks  $f_{\theta_1}, \ldots, f_{\theta_M}$  by  $F(\boldsymbol{x}) = \frac{1}{M} \sum_{i=1}^M f_{\theta_i}(\boldsymbol{x})$ .
- Average base learner loss:  $\frac{1}{M}\sum_{i=1}^{M}\ell(f_{\theta_i}(\boldsymbol{x}),y).$

On diversity in ensembles

- Notation:  $f_{\theta}$  is a network with weights  $\theta$ , and  $\ell(f_{\theta}(\boldsymbol{x}), y)$  is the loss for  $(\boldsymbol{x}, y)$ . Define the ensemble of M networks  $f_{\theta_1}, \ldots, f_{\theta_M}$  by  $F(\boldsymbol{x}) = \frac{1}{M} \sum_{i=1}^M f_{\theta_i}(\boldsymbol{x})$ .
- Average base learner loss:  $\frac{1}{M} \sum_{i=1}^{M} \ell(f_{\theta_i}(x), y)$ .
- Oracle ensemble: given  $f_{\theta_1}, \dots, f_{\theta_M}$ , the oracle ensemble  $F_{\mathsf{OE}}$  is defined as

$$F_{\mathsf{OE}}(oldsymbol{x}) = f_{ heta_k}(oldsymbol{x}), \quad ext{ where } \quad k \in \operatorname*{argmin}_i \ell(f_{ heta_i}(oldsymbol{x}), y).$$

- Notation:  $f_{\theta}$  is a network with weights  $\theta$ , and  $\ell(f_{\theta}(\boldsymbol{x}), y)$  is the loss for  $(\boldsymbol{x}, y)$ . Define the ensemble of M networks  $f_{\theta_1}, \ldots, f_{\theta_M}$  by  $F(\boldsymbol{x}) = \frac{1}{M} \sum_{i=1}^M f_{\theta_i}(\boldsymbol{x})$ .
- Average base learner loss:  $\frac{1}{M} \sum_{i=1}^{M} \ell(f_{\theta_i}(x), y)$ .
- Oracle ensemble: given  $f_{\theta_1}, \dots, f_{\theta_M}$ , the oracle ensemble  $F_{\mathsf{OE}}$  is defined as

$$F_{\mathsf{OE}}(oldsymbol{x}) = f_{ heta_k}(oldsymbol{x}), \quad ext{ where } \quad k \in \operatorname*{argmin}_i \ell(f_{ heta_i}(oldsymbol{x}), y).$$

 As a rule of thumb, small oracle ensemble loss indicates more diverse base learner predictions.

On diversity in ensembles

## Proposition

Suppose  $\ell$  is negative log-likelihood (NLL). Then, the oracle ensemble loss, ensemble loss, and average base learner loss satisfy the following inequality:

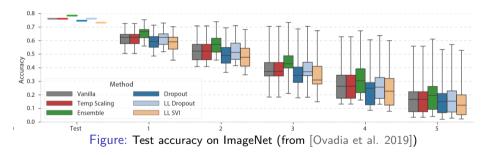
$$\ell(F_{OE}(\boldsymbol{x}), y) \le \ell(F(\boldsymbol{x}), y) \le \frac{1}{M} \sum_{i=1}^{M} \ell(f_{\theta_i}(\boldsymbol{x}), y).$$

### Proof.

Direct application of Jensen's inequality for the right inequality and definition of oracle ensemble for the left one.

- Typical approaches, such as deep ensembles [Lakshminarayanan et al. 2017], only ensembles predictions coming from the same *fixed* architecture as follows:
  - 1. Independently train multiple copies of a fixed architecture with random initializations.
  - 2. Create an ensemble by averaging outputs, i.e. predicted distribution over the classes (in the case of classification).

• Typical approaches, such as deep ensembles [Lakshminarayanan et al. 2017], only ensembles predictions coming from the same *fixed* architecture



- Typical approaches, such as deep ensembles [Lakshminarayanan et al. 2017], only ensembles
  predictions coming from the same fixed architecture
- Why only use a fixed architecture? Would ensembling different architectures result in higher diversity among the ensemble predictions?

- Typical approaches, such as deep ensembles [Lakshminarayanan et al. 2017], only ensembles predictions coming from the same *fixed* architecture
- Why only use a fixed architecture? Would ensembling different architectures result in higher diversity among the ensemble predictions?
  - → We propose a procedure to automatically construct ensembles of varying architectures over *complex*, state-of-the-art architectural search spaces.

- Typical approaches, such as deep ensembles [Lakshminarayanan et al. 2017], only ensembles
  predictions coming from the same fixed architecture
- Why only use a fixed architecture? Would ensembling different architectures result in higher diversity among the ensemble predictions?
  - → We propose a procedure to automatically construct ensembles of varying architectures over *complex*, state-of-the-art architectural search spaces.
  - ightarrow Varying the base learner architectures increases diversity ightarrow ensembles have better predictive performance and uncertainty, in-distribution and during shift.

## Varying vs. fixed base learner architectures

Visualizing base learner predictions using t-SNE on CIFAR-10

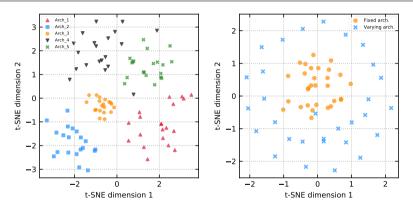


Figure: Left: Predictions of 5 different archs, each trained with 20 different inits. Right: Predictions of base learners in an ensemble with varying archs (found using NES) vs. fixed arch (deep ensemble of optimized arch).

• Let  $\mathcal{L}(f,\mathcal{D}) = \sum_{(x,y) \in \mathcal{D}} \ell(f(x),y)$  be the loss of f over dataset  $\mathcal{D}$  and let Ensemble be the function which maps a set of base learners  $\{f_1,\ldots,f_M\}$  to the ensemble  $F = \frac{1}{M} \sum_{i=1}^M f_i$ . A NES algorithm aims to solve the following optimization problem:

$$\begin{split} & \min_{\alpha_1, \dots, \alpha_M \in \mathcal{A}} \mathcal{L} \left( \texttt{Ensemble}(f_{\theta_1, \alpha_1}, \dots, f_{\theta_M, \alpha_M}), \mathcal{D}_{\mathsf{val}} \right) \\ & \texttt{s.t.} \quad \theta_i \in \operatorname*{argmin}_{\theta} \mathcal{L}(f_{\theta, \alpha_i}, \mathcal{D}_{\mathsf{train}}) \qquad \text{for } i = 1, \dots, M \end{split}$$

where A is the architecture search space.

• Let  $\mathcal{L}(f,\mathcal{D}) = \sum_{(x,y) \in \mathcal{D}} \ell(f(x),y)$  be the loss of f over dataset  $\mathcal{D}$  and let Ensemble be the function which maps a set of base learners  $\{f_1,\ldots,f_M\}$  to the ensemble  $F = \frac{1}{M} \sum_{i=1}^M f_i$ . A NES algorithm aims to solve the following optimization problem:

$$\begin{split} & \min_{\alpha_1, \dots, \alpha_M \in \mathcal{A}} \mathcal{L} \left( \texttt{Ensemble}(f_{\theta_1, \alpha_1}, \dots, f_{\theta_M, \alpha_M}), \mathcal{D}_{\mathsf{val}} \right) \\ & \texttt{s.t.} \quad \theta_i \in \operatorname*{argmin}_{\theta} \mathcal{L}(f_{\theta, \alpha_i}, \mathcal{D}_{\mathsf{train}}) \qquad \mathsf{for} \ i = 1, \dots, M \end{split}$$

where A is the architecture search space.

• The search space size is effectively  $\mathcal{A}^M$ , compared to it being  $\mathcal{A}$  in typical NAS.

General approach

• Our approach for finding base learner architectures that optimize ensemble performance consists of two steps. Let  $f_{\theta,\alpha}$  denote a network with arch  $\alpha$  and weights  $\theta$ . Computational budget denoted by K and ensemble size by M.

- Our approach for finding base learner architectures that optimize ensemble performance consists of two steps. Let  $f_{\theta,\alpha}$  denote a network with arch  $\alpha$  and weights  $\theta$ . Computational budget denoted by K and ensemble size by M.
  - 1. **Pool building**: build a *pool*  $\mathcal{P} = \{f_{\theta_1,\alpha_1},\ldots,f_{\theta_K,\alpha_K}\}$  of size K consisting of potential base learners, where each  $f_{\theta_i,\alpha_i}$  is a network trained independently on  $\mathcal{D}_{\text{train}}$ .

- Our approach for finding base learner architectures that optimize ensemble performance consists of two steps. Let  $f_{\theta,\alpha}$  denote a network with arch  $\alpha$  and weights  $\theta$ . Computational budget denoted by K and ensemble size by M.
  - 1. **Pool building**: build a pool  $\mathcal{P} = \{f_{\theta_1,\alpha_1},\ldots,f_{\theta_K,\alpha_K}\}$  of size K consisting of potential base learners, where each  $f_{\theta_i,\alpha_i}$  is a network trained independently on  $\mathcal{D}_{\text{train}}$ .
  - 2. **Ensemble selection**: select M base learners  $f_{\theta_1^*,\alpha_1^*},\ldots,f_{\theta_M^*,\alpha_M^*}$  from  $\mathcal P$  to form an ensemble which minimizes loss on  $\mathcal D_{\mathsf{val}}$ . (We assume  $K \geq M$ .)

- Our approach for finding base learner architectures that optimize ensemble performance consists of two steps. Let  $f_{\theta,\alpha}$  denote a network with arch  $\alpha$  and weights  $\theta$ . Computational budget denoted by K and ensemble size by M.
  - 1. **Pool building**: build a pool  $\mathcal{P} = \{f_{\theta_1,\alpha_1},\ldots,f_{\theta_K,\alpha_K}\}$  of size K consisting of potential base learners, where each  $f_{\theta_i,\alpha_i}$  is a network trained independently on  $\mathcal{D}_{\text{train}}$ .
  - 2. **Ensemble selection**: select M base learners  $f_{\theta_1^*,\alpha_1^*},\ldots,f_{\theta_M^*,\alpha_M^*}$  from  $\mathcal{P}$  to form an ensemble which minimizes loss on  $\mathcal{D}_{\text{val}}$ . (We assume  $K \geq M$ .)
- For step 2, we use forward step-wise selection without replacement: given pool  $\mathcal{P}$ , start with an empty ensemble and add to it the network from  $\mathcal{P}$  which minimizes ensemble loss on  $\mathcal{D}_{\text{val}}$ . We repeat this without replacement until the ensemble is of size M [Caruana et al., 2004].

- Our approach for finding base learner architectures that optimize ensemble performance consists of two steps. Let  $f_{\theta,\alpha}$  denote a network with arch  $\alpha$  and weights  $\theta$ . Computational budget denoted by K and ensemble size by M.
  - 1. **Pool building**: build a *pool*  $\mathcal{P} = \{f_{\theta_1,\alpha_1},\ldots,f_{\theta_K,\alpha_K}\}$  of size K consisting of potential base learners, where each  $f_{\theta_i,\alpha_i}$  is a network trained independently on  $\mathcal{D}_{\text{train}}$ .
  - 2. **Ensemble selection**: select M base learners  $f_{\theta_1^*,\alpha_1^*},\ldots,f_{\theta_M^*,\alpha_M^*}$  from  $\mathcal P$  to form an ensemble which minimizes loss on  $\mathcal D_{\text{val}}$ . (We assume  $K\geq M$ .)
- For step 2, we use forward step-wise selection without replacement: given pool  $\mathcal{P}$ , start with an empty ensemble and add to it the network from  $\mathcal{P}$  which minimizes ensemble loss on  $\mathcal{D}_{\text{val}}$ . We repeat this without replacement until the ensemble is of size M [Caruana et al., 2004].
- Later we discuss two options for pool building in step 1.

Ensemble Adaptation to Dataset Shift

 We assume that at test time, the data will contain a distributional shift(s) wrt training data. The shift(s) is assumed to be unknown at training time.

Ensemble Adaptation to Dataset Shift

- We assume that at test time, the data will contain a distributional shift(s) wrt training data. The shift(s) is assumed to be unknown at training time.
- We consider the case where a validation dataset with validation shift(s) is available.



Validation corruptions
CIFAR-10-C dataset [Hendrycks & Dietterich, 2019]
Test corruptions



Ensemble Adaptation to Dataset Shift

- We assume that at test time, the data will contain a distributional shift(s) wrt training data. The shift(s) is assumed to be unknown at training time.
- We consider the case where a validation dataset with validation shift(s) is available.
- To adapt the ensembles to shift, simply replace  $\mathcal{D}_{\text{val}}$  with the shifted validation dataset  $\mathcal{D}_{\text{val}}^{\text{shift}}$ .



CIFAR-10-C dataset [Hendrycks & Dietterich, 2019] Test corruptions



Ensemble Adaptation to Dataset Shift

- We assume that at test time, the data will contain a distributional shift(s) wrt training data. The shift(s) is assumed to be unknown at training time.
- We consider the case where a validation dataset with validation shift(s) is available.
- To adapt the ensembles to shift, simply replace  $\mathcal{D}_{\text{val}}$  with the shifted validation dataset  $\mathcal{D}_{\text{val}}^{\text{shift}}$ .
- Roughly (and heuristically), diversity in ensembles is particularly useful during shift. Using a shifted validation set allows NES algorithms to "consider" what happens to baselearners when they're used during shift (and are likely to fail).



CIFAR-10-C dataset [Hendrycks & Dietterich, 2019]
Test corruptions



NES-RS: with random search

• **NES-RS** is a simple random search (RS) based approach: we build the pool by sampling K architectures uniformly at random.

NES-RS: with random search

- **NES-RS** is a simple random search (RS) based approach: we build the pool by sampling K architectures uniformly at random.
- Motivation: in NAS, RS is a competitive baseline on well-designed architecture search spaces [Li & Talwalkar 2019]. Applying ensemble selection to the pool of randomly sampled archs is then a simple way to exploit diversity among varying archs.

### **Algorithm 1:** NES with Random Search

**Data:** Search space A; ensemble size M; comp. budget K;  $\mathcal{D}_{train}$ ,  $\mathcal{D}_{val}$ .

- <sup>1</sup> Sample K architectures  $\alpha_1, \ldots, \alpha_K$  independently and uniformly from A.
- <sup>2</sup> Train each architecture  $\alpha_i$  using  $\mathcal{D}_{\text{train}}$ , yielding a pool of networks  $\mathcal{P} = \{f_{\theta_1,\alpha_1},\ldots,f_{\theta_K,\alpha_K}\}$ .
- 3 Select base learners  $\{f_{\theta_1^*,\alpha_1^*},\ldots,f_{\theta_M^*,\alpha_M^*}\}$  = ForwardSelect $(\mathcal{P},\mathcal{D}_{\mathrm{val}},M)$  by forward step-wise selection without replacement.
- 4 **return** ensemble Ensemble  $(f_{\theta_1^*,\alpha_1^*},\ldots,f_{\theta_M^*,\alpha_M^*})$

Figure: NES-RS.  $f_{\theta,\alpha}$  is a network with weights  $\theta$  and architecture  $\alpha$ .

#### **Neural Ensemble Search**

NES-RE: with Regularized Evolution

• NES-RE uses another approach for pool building inspired by regularized evolution [Real et al., 2018]. The arch search space is explored by *evolving a population of architectures* till a budget K is reached.

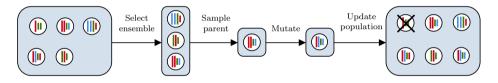


Figure: One iteration of NES-RE. Network architectures are represented as colored bars of different lengths illustrating different layers and widths. The pool returned is the set of *all architectures evaluated*.

#### **Neural Ensemble Search**

NES-RE: with Regularized Evolution

### Algorithm 2: NES with Regularized Evolution

**Data:** Search space A; ensemble size M; comp. budget K;  $\mathcal{D}_{train}$ ,  $\mathcal{D}_{val}$ ; population size P;

#### **Neural Ensemble Search**

NES-RE: with Regularized Evolution

## Algorithm 2: NES with Regularized Evolution

**Data:** Search space A; ensemble size M; comp. budget K;  $\mathcal{D}_{\text{train}}$ ,  $\mathcal{D}_{\text{val}}$ ; population size P; number of parent candidates m.

- <sup>1</sup> Sample P architectures  $\alpha_1, \ldots, \alpha_P$  independently and uniformly from A.
- 2 Train each architecture  $\alpha_i$  using  $\mathcal{D}_{\text{train}}$ , and initialize  $\mathfrak{p} = \mathcal{P} = \{f_{\theta_1,\alpha_1},\ldots,f_{\theta_P,\alpha_P}\}$ .

### **Algorithm 2:** NES with Regularized Evolution

```
Data: Search space \mathcal{A}; ensemble size M; comp. budget K; \mathcal{D}_{\text{train}}, \mathcal{D}_{\text{val}}; population size P; number of parent candidates m.

1 Sample P architectures \alpha_1, \ldots, \alpha_P independently and uniformly from \mathcal{A}.

2 Train each architecture \alpha_i using \mathcal{D}_{\text{train}}, and initialize \mathfrak{p} = \mathcal{P} = \{f_{\theta_1,\alpha_1},\ldots,f_{\theta_P,\alpha_P}\}.

3 while |\mathcal{P}| < K do

4 if \mathcal{D}_{\text{val}}^{\text{shift}} is available then

5 |\mathcal{D}_{\text{val}} \leftarrow \mathcal{D} \sim \{\mathcal{D}_{\text{val}}, \mathcal{D}_{\text{val}}^{\text{shift}}\} // randomly pick between clean & shifted

6 Select m parent candidates \{f_{\widetilde{\theta}_1,\widetilde{\alpha}_1},\ldots,f_{\widetilde{\theta}_m,\widetilde{\alpha}_m}\} = ForwardSelect (\mathfrak{p},\mathcal{D}_{\text{val}},m).

7 Sample uniformly a parent architecture \alpha from \{\widetilde{\alpha}_1,\ldots,\widetilde{\alpha}_m\}. // \alpha stays in \mathfrak{p}.

8 Apply mutation to \alpha, yielding child architecture \beta.

9 Train \beta using \mathcal{D}_{\text{train}} and add the trained network f_{\theta,\beta} to \mathfrak{p} and \mathcal{P}.
```

#### **Algorithm 2:** NES with Regularized Evolution

```
Data: Search space \mathcal{A}; ensemble size M; comp. budget K; \mathcal{D}_{\text{train}}, \mathcal{D}_{\text{val}}; population size P; number of parent candidates m.

1 Sample P architectures \alpha_1, \ldots, \alpha_P independently and uniformly from \mathcal{A}.

2 Train each architecture \alpha_i using \mathcal{D}_{\text{train}}, and initialize \mathfrak{p} = \mathcal{P} = \{f_{\theta_1,\alpha_1},\ldots,f_{\theta_P,\alpha_P}\}.

3 while |\mathcal{P}| < K do

4 If \mathcal{D}_{\text{val}}^{\text{shift}} is available then

5 |\mathcal{D}_{\text{val}} \leftarrow \mathcal{D} \sim \{\mathcal{D}_{\text{val}}, \mathcal{D}_{\text{val}}^{\text{shift}}\}| // randomly pick between clean & shifted

6 Select m parent candidates \{f_{\widetilde{\theta}_1,\widetilde{\alpha}_1},\ldots,f_{\widetilde{\theta}_m,\widetilde{\alpha}_m}\} = ForwardSelect(\mathfrak{p},\mathcal{D}_{\text{val}},m).

7 Sample uniformly a parent architecture \alpha from \{\widetilde{\alpha}_1,\ldots,\widetilde{\alpha}_m\}. // \alpha stays in \mathfrak{p}.

8 Apply mutation to \alpha, yielding child architecture \beta.

9 Train \beta using \mathcal{D}_{\text{train}} and add the trained network f_{\theta,\beta} to \mathfrak{p} and \mathcal{P}.

10 Remove the oldest member in \mathfrak{p}. // as done in RE (Real et al., 2019).
```

#### **Algorithm 2:** NES with Regularized Evolution

```
Data: Search space \mathcal{A}; ensemble size M; comp. budget K; \mathcal{D}_{train}, \mathcal{D}_{val}; population size P;
              number of parent candidates m.
 1 Sample P architectures \alpha_1, \ldots, \alpha_P independently and uniformly from A.
 2 Train each architecture \alpha_i using \mathcal{D}_{\text{train}}, and initialize \mathfrak{p} = \mathcal{P} = \{f_{\theta_1, \alpha_1}, \dots, f_{\theta_{B_i, \alpha_B}}\}.
 3 while |\mathcal{P}| < K do
         if \mathcal{D}_{val}^{\text{shift}} is available then
       \mathcal{D}_{val} \leftarrow \mathcal{D} \sim \{\mathcal{D}_{val}, \mathcal{D}_{val}^{shift}\} // randomly pick between clean & shifted
         Select m parent candidates \{f_{\widetilde{\theta}_1,\widetilde{\alpha}_2},\ldots,f_{\widetilde{\theta}_m,\widetilde{\alpha}_m}\}= ForwardSelect (\mathfrak{p},\mathcal{D}_{\text{val}},m).
 6
         Sample uniformly a parent architecture \alpha from \{\widetilde{\alpha}_1, \dots, \widetilde{\alpha}_m\}. //\alpha stays in \mathfrak{p}.
          Apply mutation to \alpha, yielding child architecture \beta.
          Train \beta using \mathcal{D}_{\text{train}} and add the trained network f_{\theta,\beta} to \mathfrak{p} and \mathcal{P}.
 9
          Remove the oldest member in \mathfrak{p}. // as done in RE (Real et al., 2019).
11 Select base learners \{f_{\theta_*^*,\alpha_*^*},\ldots,f_{\theta_*^*,\alpha_*^*}\} = ForwardSelect(\mathcal{P},\mathcal{D}_{val},M) by forward
      step-wise selection without replacement.
return ensemble Ensemble (f_{\theta_1^*,\alpha_1^*},\ldots,f_{\theta_1^*,\alpha_1^*})
```

On the DARTS [Liu et al. 2019] search space; Fashion-MNIST

 We compare ensembles found by NES with the baseline of deep ensembles composed of a fixed, optimized architecture; the optimized arch is either DARTS, AmoebaNet or optimized by RS.

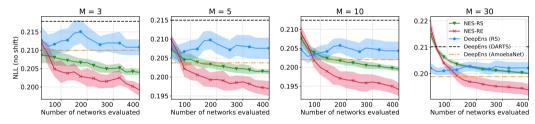
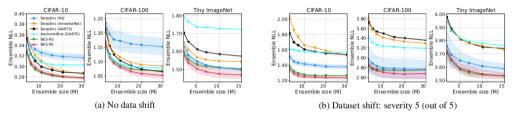


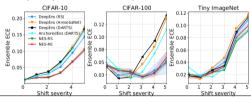
Figure: Negative log-likelihood achieved by ensembles on test data. Note that AmoebaNet arch is deeper than all other methods shown. M is ensemble size.

On the DARTS [Liu et al. 2019] search space: CIFAR-10/100, Tiny ImageNet

• NLL vs. ensemble size after 400 iterations of NES:

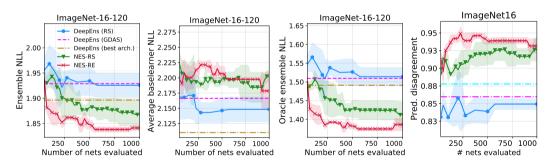


• Expected Calibration Error (ECE) vs. shift severity level after 400 iterations of NES (M=10).



Results on NAS-Bench-201 [Dong & Yang 2020]: CIFAR-10/100 and ImageNet-16-120

By yielding more diverse base learners (lower *oracle NLL and higher predictive disagreement*), NES outperforms deep ensembles of a fixed architecture, even though the latter contains better individual base learners (lower *average base learner NLL*).

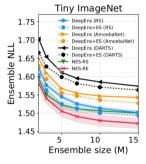


Results on NAS-Bench-201 [Dong & Yang 2020]: CIFAR-10/100 and ImageNet-16-120

NES outperforms DeepEns (best arch.) with up to 14 classification error (mean  $\pm 95\%$  confidence interval of 3 runs) percentage points.

| Dataset         | Shift<br>Severity | Classif. error (%), $A = NAS$ -Bench-201 search space |                         |                              |                              |                              |
|-----------------|-------------------|-------------------------------------------------------|-------------------------|------------------------------|------------------------------|------------------------------|
|                 |                   |                                                       | DeepEns<br>(best arch.) | DeepEns<br>(RS)              | NES-RS                       | NES-RE                       |
| CIFAR-10        | 0                 | 8.4                                                   | 7.2                     | 7.8±0.2                      | 7.7±0.1                      | 7.6±0.1                      |
|                 | 3                 | 28.7                                                  | 27.1                    | $28.3{\scriptstyle \pm 0.3}$ | $22.0_{\pm 0.2}$             | $22.5 \pm 0.1$               |
|                 | 5                 | 47.8                                                  | 46.3                    | $37.1{\scriptstyle\pm0.0}$   | $32.5 \scriptstyle{\pm 0.2}$ | $33.0{\scriptstyle\pm0.5}$   |
| CIFAR-100       | 0                 | 29.9                                                  | 26.4                    | 26.3±0.4                     | 23.3±0.3                     | $23.5_{\pm 0.2}$             |
|                 | 3                 | 60.3                                                  | 54.5                    | $57.0 \pm 0.9$               | $46.6 \scriptstyle{\pm 0.3}$ | $46.7 \pm 0.5$               |
|                 | 5                 | 75.3                                                  | 69.9                    | $64.5{\scriptstyle \pm 0.0}$ | $59.7 \scriptstyle{\pm 0.2}$ | $60.0{\scriptstyle \pm 0.6}$ |
| ImageNet-16-120 | 0                 | 49.9                                                  | 49.9                    | $50.5 \pm 0.6$               | $48.1_{\pm 1.0}$             | $47.9_{\pm 0.4}$             |

- NES is typically better then deep ensembles with the seeds selected from a pool via ForwardSelect.
- The primary computational cost in NES is training K nets to form the pool.
- NES merges the 2-step procedure of finding a good architecture and then creating deep ensembles.



| Method                   | Cost (# nets trained) |          |  |
|--------------------------|-----------------------|----------|--|
| Wethou                   | Arch.                 | Ensemble |  |
| DeepEns (DARTS)          | 32                    | 10       |  |
| DeepEns + ES (DARTS)     | 32                    | 200      |  |
| DeepEns (AmoebaNet)      | 25200                 | 10       |  |
| DeepEns + ES (AmoebaNet) | 25200                 | 200      |  |
| DeepEns (RS)             | 200                   | 10       |  |
| DeepEns + ES (RS)        | 200                   | 200      |  |
| NES-RS                   |                       | 200      |  |
| NES-RE                   |                       | 200      |  |

• Varying architectures of base learners improves diversity.

- Varying architectures of base learners improves diversity.
- We propose two algorithms to effectively search for these architectures.

- Varying architectures of base learners improves diversity.
- We propose two algorithms to effectively search for these architectures.
- NES searches for more diverse ensembles without ever explicitly defining diversity.

- Varying architectures of base learners improves diversity.
- We propose two algorithms to effectively search for these architectures.
- NES searches for more diverse ensembles without ever explicitly defining diversity.
- We show improved performance and better calibration for in-distribution and shifted data.

- Varying architectures of base learners improves diversity.
- We propose two algorithms to effectively search for these architectures.
- NES searches for more diverse ensembles without ever explicitly defining diversity.
- We show improved performance and better calibration for in-distribution and shifted data.

#### In the future:

NES-BO: NES via Bayesian Optimization.

- Varying architectures of base learners improves diversity.
- We propose two algorithms to effectively search for these architectures.
- NES searches for more diverse ensembles without ever explicitly defining diversity.
- We show improved performance and better calibration for in-distribution and shifted data.

#### In the future:

- NES-BO: NES via Bayesian Optimization.
- Differentiable NES.

- Varying architectures of base learners improves diversity.
- We propose two algorithms to effectively search for these architectures.
- NES searches for more diverse ensembles without ever explicitly defining diversity.
- We show improved performance and better calibration for in-distribution and shifted data.

#### In the future:

- NES-BO: NES via Bayesian Optimization.
- Differentiable NES.
- NES in joint NAS and HPO spaces.