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Quantifying Uncertainty in Deep Learning
Why is uncertainty important?

® Predictive uncertainty can be for instance the output label together with the
confidence of that prediction in classification
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Quantifying Uncertainty in Deep Learning
Why is uncertainty important?

® Predictive uncertainty can be for instance the output label together with the
confidence of that prediction in classification

® Good uncertainty estimates quantify how much we can trust our model’s
predictions

Figure: (from [lig et al. 2018]) Optical flow and its uncertainty estimation.
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Quantifying Uncertainty in Deep Learning
Why is uncertainty important?

® Predictive uncertainty can be for instance the output label together with the
confidence of that prediction in classification

® Good uncertainty estimates quantify how much we can trust our model’s
predictions
® Some applications where uncertainty quantification is important are:

- Cost-sensitive decision making (healthcare e.g. medical imaging; self-driving cars;

robotics)
- Dealing with distribution shift (Feature skew between train and test sets; test inputs

do not belong to any of the training classes)
- Safe exploration in RL, etc.
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Calibration and Robustness to dataset shift
Can we trust our model predictions?

® |deally, a reliable model should yield maximum uncertainty when faced with an
out-of-distribution (OOD) example, i.e. it knows what it doesn’t know.
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Calibration and Robustness to dataset shift
Can we trust our model predictions?

® |deally, a reliable model should yield maximum uncertainty when faced with an
out-of-distribution (OOD) example, i.e. it knows what it doesn’t know.
- Usually neural networks are not well-calibrated and overconfident when they
should not be.

People with no idea about Al
saying it will take over the world:

My Neural Network:
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Calibration and Robustness to dataset shift
Can we trust our model predictions?

® |deally, a reliable model should yield maximum uncertainty when faced with an
out-of-distribution (OOD) example, i.e. it knows what it doesn't know.
- Usually neural networks are not well-calibrated and overconfident when they
should not be.

e Calibration tells us how well the predicted confidence (probability of correctness)
of the model aligns with the observed accuracy (frequency of correctness).
- E.g. in classification: if the correct predicted class was always with 80% probability,
then a perfectly calibrated system would imply that on 80% of the examples it
predicted the true class.
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Ensembles of neural networks
Starting point

® FEnsembles of networks are commonly used to boost performance.
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® Recent interest in ensembles has been due to their strong predictive uncertainty
estimation and robustness to distributional shift.
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Ensembles of neural networks
Starting point

® FEnsembles of networks are commonly used to boost performance.

® Recent interest in ensembles has been due to their strong predictive uncertainty
estimation and robustness to distributional shift.

® Diversity among the base learners’ predictions is believed to be key for strong
ensembles.
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Ensembles of neural networks
On diversity in ensembles

® Notation: fy is a network with weights 6, and ¢(fg(x),y) is the loss for (x,y).
Define the ensemble of M networks fy, ..., fs,, by F'(x) = ﬁ Zf\il fo,(x).

Feb 2021 Neural Ensemble Search

12



Ensembles of neural networks
On diversity in ensembles

® Notation: fy is a network with weights 6, and ¢(fg(x),y) is the loss for (x,y).
Define the ensemble of M networks fy, ..., fs,, by F'(x) = ﬁ Zf\il fo,(x).

* Average base learner loss: - 3", ((fo, (), y).

Feb 2021 Neural Ensemble Search

13



Ensembles of neural networks
On diversity in ensembles

® Notation: fy is a network with weights 6, and ¢(fg(x),y) is the loss for (x,y).
Define the ensemble of M networks fy, ..., fs,, by F'(x) = ﬁ Zf\il fo,(x).

* Average base learner loss: - 3", ((fo, (), y).
® Oracle ensemble: given fy,,..., fp,,, the oracle ensemble FpE is defined as

Foe(x) = fo,(x), where k€ argmin{(fp,(x),y).
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Ensembles of neural networks
On diversity in ensembles

® Notation: fy is a network with weights 6, and ¢(fg(x),y) is the loss for (x,y).
Define the ensemble of M networks fy, ..., fs,, by F'(x) = ﬁ Zf\il fo,(x).

* Average base learner loss: - 3", ((fo, (), y).
® Oracle ensemble: given fy,,..., fp,,, the oracle ensemble FpE is defined as

Foe(x) = fo,(x), where k€ argmin{(fp,(x),y).

® As a rule of thumb, small oracle ensemble loss indicates more diverse base learner
predictions.
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Ensembles of neural networks
On diversity in ensembles

Proposition
Suppose { is negative log-likelihood (NLL). Then, the oracle ensemble loss, ensemble
loss, and average base learner loss satisfy the following inequality:

M
{(Foe(®), y) < (F(@),5) < - > (o, (2).0).
=1

Proof.
Direct application of Jensen's inequality for the right inequality and definition of oracle
ensemble for the left one. O
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Ensembles of neural networks
Deep Ensembles

® Typical approaches, such as deep ensembles [Lakshminarayanan et al. 2017], only ensembles
predictions coming from the same fixed architecture as follows:

1. Independently train multiple copies of a fixed architecture with random initializations.
2. Create an ensemble by averaging outputs, i.e. predicted distribution over the classes
(in the case of classification).
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Ensembles of neural networks
Deep Ensembles

® Typical approaches, such as deep ensembles [Lakshminarayanan et al. 2017], only ensembles
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Figure: Test accuracy on ImageNet (from [Ovadia et al. 2019])

Feb 2021

Neural Ensemble Search 18



Ensembles of neural networks
Deep Ensembles

® Typical approaches, such as deep ensembles [Lakshminarayanan et al. 2017], only ensembles
predictions coming from the same fixed architecture

® Why only use a fixed architecture? Would ensembling different architectures result in
higher diversity among the ensemble predictions?
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Ensembles of neural networks
Deep Ensembles

® Typical approaches, such as deep ensembles [Lakshminarayanan et al. 2017], only ensembles
predictions coming from the same fixed architecture

® Why only use a fixed architecture? Would ensembling different architectures result in
higher diversity among the ensemble predictions?

— We propose a procedure to automatically construct ensembles of varying
architectures over complex, state-of-the-art architectural search spaces.
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Ensembles of neural networks
Deep Ensembles

® Typical approaches, such as deep ensembles [Lakshminarayanan et al. 2017], only ensembles
predictions coming from the same fixed architecture

® Why only use a fixed architecture? Would ensembling different architectures result in
higher diversity among the ensemble predictions?

— We propose a procedure to automatically construct ensembles of varying
architectures over complex, state-of-the-art architectural search spaces.

— Varying the base learner architectures increases diversity — ensembles have better
predictive performance and uncertainty, in-distribution and during shift.
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Varying vs. fixed base learner architectures
Visualizing base learner predictions using t-SNE on CIFAR-10
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Figure: Left: Predictions of 5 different archs, each trained with 20 different inits. Right: Predictions of base
learners in an ensemble with varying archs (found using NES) vs. fixed arch (deep ensemble of optimized arch).
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Neural Ensemble Search
Problem formulation

Let L(f, D) = > (z4)ep {(f(),y) be the loss of f over dataset D and let
Ensemble be the function which maps a set of base learners {fi,..., fas} to the
ensemble ' = ﬁ SM . fi. A NES algorithm aims to solve the following

optimization problem:
min L (Ensemble(fp, ars-- - 00,00 ) Dal)

at,...,ap €A

s.t.  6; € argmin £(fg a,;, Dtrain) fori=1,....M
0

where A is the architecture search space.
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Neural Ensemble Search
Problem formulation

Let L(f, D) = > (z4)ep {(f(),y) be the loss of f over dataset D and let
Ensemble be the function which maps a set of base learners {fi,..., fas} to the
ensemble ' = ﬁ SM . fi. A NES algorithm aims to solve the following
optimization problem:

min L (Ensemble(fp, ars-- - 00,00 ) Dal)

at,...,ap €A

s.t.  6; € argmin £(fg a,;, Dtrain) fori=1,....M
0

where A is the architecture search space.
The search space size is effectively A", compared to it being A in typical NAS.
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Neural Ensemble Search
General approach

® Qur approach for finding base learner architectures that optimize ensemble
performance consists of two steps. Let fp . denote a network with arch o and
weights 6. Computational budget denoted by K and ensemble size by M.
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Neural Ensemble Search
General approach

® Qur approach for finding base learner architectures that optimize ensemble
performance consists of two steps. Let fp . denote a network with arch o and
weights 6. Computational budget denoted by K and ensemble size by M.
1. Pool building: build a pool P = {fg, a1s---, fox,ax } of size K consisting of
potential base learners, where each fy, o, is a network trained independently on
Dtrain-
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Neural Ensemble Search
General approach

® Qur approach for finding base learner architectures that optimize ensemble
performance consists of two steps. Let fp . denote a network with arch o and
weights 6. Computational budget denoted by K and ensemble size by M.
1. Pool building: build a pool P = {fg, a1s---, fox,ax } of size K consisting of
potential base learners, where each fy, o, is a network trained independently on
Dtrain-
2. Ensemble selection: select M base learners fe;,a;, .. .,f@]*w,ayu from P to form an
ensemble which minimizes loss on D,,. (We assume K > M)
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Neural Ensemble Search
General approach

® Qur approach for finding base learner architectures that optimize ensemble
performance consists of two steps. Let fp . denote a network with arch o and
weights 6. Computational budget denoted by K and ensemble size by M.
1. Pool building: build a pool P = {fg, a1s---, fox,ax } of size K consisting of
potential base learners, where each fy, o, is a network trained independently on
Dtrain-
2. Ensemble selection: select M base learners fe;,a;, .. .,f@;«wayu from P to form an
ensemble which minimizes loss on D,,. (We assume K > M)

® For step 2, we use forward step-wise selection without replacement: given pool P,
start with an empty ensemble and add to it the network from P which minimizes
ensemble loss on D, ;. We repeat this without replacement until the ensemble is
of size M [Caruana et al., 2004].
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Neural Ensemble Search
General approach

® Qur approach for finding base learner architectures that optimize ensemble
performance consists of two steps. Let fp . denote a network with arch o and
weights 6. Computational budget denoted by K and ensemble size by M.
1. Pool building: build a pool P = {fg, a1s---, fox,ax } of size K consisting of
potential base learners, where each fy, o, is a network trained independently on
Dtrain-
2. Ensemble selection: select M base learners fe;,a;, .. .,f@;«wayu from P to form an
ensemble which minimizes loss on D,,. (We assume K > M)
® For step 2, we use forward step-wise selection without replacement: given pool P,
start with an empty ensemble and add to it the network from P which minimizes
ensemble loss on D, ;. We repeat this without replacement until the ensemble is
of size M [Caruana et al., 2004].

® | ater we discuss two options for pool building in step 1.
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Neural Ensemble Search
Ensemble Adaptation to Dataset Shift

® \We assume that at test time, the data will contain a
distributional shift(s) wrt training data. The shift(s) is
assumed to be unknown at training time.
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Neural Ensemble Search
Ensemble Adaptation to Dataset Shift
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® We assume that at test time, the data will contain a
distributional shift(s) wrt training data. The shift(s) is |
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® \We consider the case where a validation dataset with CIFAR-10-C dataset [Hendrycks & Dietterich, 2019]
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Neural Ensemble Search
Ensemble Adaptation to Dataset Shift
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® We assume that at test time, the data will contain a
distributional shift(s) wrt training data. The shift(s) is |
assumed to be unknown at training time.

Validation corruptions
® \We consider the case where a validation dataset with CIFAR-10-C dataset [Hendrycks & Dietterich, 2019]
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Neural Ensemble Search
Ensemble Adaptation to Dataset Shift

Speckle Noise  Gaussian Blur Spatter Saturate

® We assume that at test time, the data will contain a
distributional shift(s) wrt training data. The shift(s) is |
assumed to be unknown at training time.

Validation corruptions
® \We consider the case where a validation dataset with CIFAR-10-C dataset [Hendrycks & Dietterich, 2019]
validation shift(s) is available. fest corruptions
\

Impulse Noise _Defocus Blur Frosted Glass Blur

® To adapt the ensembles to shift, simply replace Dy
with the shifted validation dataset Dehift

val -

® Roughly (and heuristically), diversity in ensembles is Maton Blr oo Bt
particularly useful during shift. Using a shifted
validation set allows NES algorithms to “consider” :
what happens to baselearners when they're used during brighiness Contrast
shift (and are likely to fail).
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Neural Ensemble Search
NES-RS: with random search

® NES-RS is a simple random search (RS) based approach: we build the pool by
sampling K architectures uniformly at random.
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Neural Ensemble Search
NES-RS: with random search

® NES-RS is a simple random search (RS) based approach: we build the pool by
sampling K architectures uniformly at random.

® Motivation: in NAS, RS is a competitive baseline on well-designed architecture
search spaces [Li & Talwalkar 2019]. Applying ensemble selection to the pool of
randomly sampled archs is then a simple way to exploit diversity among varying
archs.

Feb 2021 Neural Ensemble Search
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Neural Ensemble Search
NES-RS: with random search

Algorithm 1: NES with Random Search
Data: Search space A; ensemble size M; comp. budget K; Dyin, Dyar-

1 Sample K architectures ag, . . ., ax independently and uniformly from A.

2 Train each architecture ; using Dyin, yielding a pool of networks P = { fo, a1 - - - » fox.ax -

3 Select b?lse learn(?rs {f.gi"ai«, -y for, a1, } = Forwardselect(P, Dy, M) by forward
step-wise selection without replacement.

4 return ensemble Ensemble(for ary-- -, fg}*u’az{)

Figure: NES-RS. fy o is a network with weights 6 and architecture .
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Neural Ensemble Search
NES-RE: with Regularized Evolution

® NES-RE uses another approach for pool building inspired by regularized evolution
[Real et al., 2018]. The arch search space is explored by evolving a population of
architectures till a budget K is reached.

Select Sample Update
population

ensemble parent . Mutate .

Figure: One iteration of NES-RE. Network architectures are represented as colored bars of
different lengths illustrating different layers and widths. The pool returned is the set of all
architectures evaluated.
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Neural Ensemble Search
NES-RE: with Regularized Evolution

Algorithm 2: NES with Regularized Evolution

Data: Search space A; ensemble size M; comp. budget K; Dyain, Dvai; population size P;

Feb 2021 Neural Ensemble Search
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Neural Ensemble Search
NES-RE: with Regularized Evolution

Algorithm 2: NES with Regularized Evolution

Data: Search space A; ensemble size M; comp. budget K; Dyin, Dyvar; population size P;
number of parent candidates m.
1 Sample P architectures 1, . .., «p independently and uniformly from .A.
2 Train each architecture o; using Dynin, and initialize p =P = {fg, ars-- - fop.ap |-
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Neural Ensemble Search
NES-RE: with Regularized Evolution

Algorithm 2: NES with Regularized Evolution

Data: Search space .4; ensemble size M ; comp. budget K; Dyin, Dyai; population size P;
number of parent candidates m.
1 Sample P architectures s, . . . , ap independently and uniformly from A.
2 Train each architecture a; using Dyin, and initialize p = P = {fo, a1s---» fop.ap }-
3 while |P| < K do

4 | if D5 quailable then

5 L Dyal < D ~ {Dvahpf,};{ﬂ // randomly pick between clean & shifted
6 Select m parent candidates {f5 5 ,...,f; 5 }=Forwardselect(p, Dya,m).
7 Sample uniformly a parent architecture « from {az, . .., Gm }. // « stays in p.

8 Apply mutation to «, yielding child architecture 3.
9 Train (3 using Dy,in and add the trained network fy g to p and P.
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Neural Ensemble Search
NES-RE: with Regularized Evolution

Algorithm 2: NES with Regularized Evolution

7 SR SR

Data: Search space A; ensemble size M; comp. budget K; Dyain, Dva; population size P;

number of parent candidates m.

Sample P architectures s, . . ., p independently and uniformly from A.
Train each architecture a; using Dyin, and initialize p = P = {fo, 015 - - fop,ap }-
while |P| < K do
if DNt s quailable then
L Dya < D ~ {Dval,D:];iﬂ // randomly pick between clean & shifted
Select m parent candidates {f5 5 ..., f; 5 }=Forwardselect(p, Dy, m).
Sample uniformly a parent architecture o from {1, ..., Qm }- // « stays in p.

Apply mutation to ¢, yielding child architecture 3.
Train 3 using Dyin and add the trained network fg g to p and P.
Remove the oldest member in p. // as done in RE (Real et al., 2019).
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Neural Ensemble Search
NES-RE: with Regularized Evolution

Algorithm 2: NES with Regularized Evolution

Data: Search space .4; ensemble size M; comp. budget K; Dyain, Dya; population size P;

number of parent candidates m.

1 Sample P architectures 1, . .., «ap independently and uniformly from A.
2 Train each architecture a; using Dygin, and initialize p = P = {fo, ays---» fop.ap I
3 while |P| < K do

4
5

1

12

if DNt s quailable then

L Dya < D ~ {'Dva],DfE{ﬂ // randomly pick between clean & shifted
Select m parent candidates {f};lﬁ17 el §Wam} = ForwardSelect(p, Dyy, m).
Sample uniformly a parent architecture o from {1, ..., Qm }- // a stays in p.

Apply mutation to «, yielding child architecture 3.
Train 3 using Diin and add the trained network fp 5 to p and P.

| Remove the oldest member in p. // as done in RE (Real et al., 2019).
Select bgse learne;rs {f.g;va;, -y for, a3, } = Forwardselect (P, Dya, M) by forward
step-wise selection without replacement.
return ensemble Ensemble(for ax,- - -, fo1,.0%,)
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Experimental results
On the DARTS [Liu et al. 2019] search space; Fashion-MNIST

® We compare ensembles found by NES with the baseline of deep ensembles
composed of a fixed, optimized architecture; the optimized arch is either DARTS,
AmoebaNet or optimized by RS.

M=3 M =5 M =10 M = 30
0.215 0.22 —¥— NES-RS
0.215 0.210 —%— NES-RE
£ 0.210 —e— DeepEns (RS)
< ) 21 +%--'--- DeepEns (DARTS) 1
§ 0.210 0.205 02050 § 0-21 DeezEns (AmoebaNet)
30205 0.200
=4 0.200
0.200 0.195
0.195
100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400
Number of networks evaluated Number of networks evaluated Number of networks evaluated Number of networks evaluated

Figure: Negative log-likelihood achieved by ensembles on test data. Note that AmoebaNet arch
is deeper than all other methods shown. M is ensemble size.
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Experimental results
On the DARTS [Liu et al. 2019] search space: CIFAR-10/100, Tiny ImageNet

® NLL vs. ensemble size after 400 iterations of NES:
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(a) No data shift (b) Dataset shift: severity 5 (out of 5)
® Expected Calibration Error (ECE) vs. shift severity level after 400 iterations of NES (M = 10).
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Experimental results
Results on NAS-Bench-201 [Dong & Yang 2020]: CIFAR-10/100 and ImageNet-16-120

By yielding more diverse base learners (lower oracle NLL and higher predictive disagreement),
NES outperforms deep ensembles of a fixed architecture, even though the latter contains better
individual base learners (lower average base learner NLL).

ImageNet-16-120 ImageNet-16-120 ImageNet-16-120 ImageNet16
1.65
—e— DeepEns (RS) 12275 0.95
——- DeepEns (GDAS) E‘ 4 €
2.00 —-- DeepEns (best arch.) = =3 v 0.93
4 [} e
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= 5 ) 3
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a5 o} @ 2
= 8 c  0.88
g s S S
S g g 5 0.85
o2 g L
g S %083
<
250 500 750 1000 250 500 750 1000 250 500 750 1000 250I 500I 750I 1000
Number of nets evaluated Number of nets evaluated Number of nets evaluated # nets evaluated
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Experimental results
Results on NAS-Bench-201 [Dong & Yang 2020]: CIFAR-10/100 and ImageNet-16-120

NES outperforms DeepEns (best arch.) with up to 14 classification error (mean +95%
confidence interval of 3 runs) percentage points.

Classif. error (%), A = NAS-Bench-201 search space

Dataset Shift

Severity DeepEns DeepEns DeepEns NES-RS NES-RE

(GDAS) (bestarch.) (RS)
0 8.4 7.2 T.8202 T7.Tzo01 T.6+01
CIFAR-10 3 28.7 27.1 283203 22.0x02 225201
5 47.8 16.3 371200 325202  33.0z05
0 29.9 26.4 26,3204 23.3203  23.5z02
CIFAR-100 3 60.3 54.5 57000 46,6103 46.Txo0s
5 75.3 69.9 64.59200 59.Txoz  60.0x06
ImageNet-16-120 0 49.9 49.9 505206 48.1210 479204
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Experimental results
Computational cost and further results

® NES is typically better then
deep ensembles with the
seeds selected from a pool
via ForwardSelect.

® The primary computational
cost in NES is training K
nets to form the pool.

® NES merges the 2-step
procedure of finding a good
architecture and then
creating deep ensembles.

Ensemble NLL

1.75 =~ DeepEns (RS)
@ DeepEns+ES (RS)
DeepEns (AmoebaNet)
1.70 DeepEns+ES (AmoebaNet)
\ —4&~ DeepEns [DARTS)
a @+ DeepEns+ES (DARTS)
1.65 1 = nesrs
NES-RE
1.60 '
1.55
1.50 I T e
1.45

Tiny ImageNet

5 10 15
Ensemble size (M)

Cost (# nets trained)

Method
Arch.  Ensemble

DeepEns (DARTS) 32 10
DeepEns + ES (DARTS) 32 200
DeepEns (AmoebaNet) 25200 10
DeepEns + ES (AmoebaNet) 25200 200
DeepEns (RS) 200 10
DeepEns + ES (RS) 200 200
NES-RS 200

NES-RE 200
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Summary and future directions

® Varying architectures of base learners improves diversity.
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Summary and future directions

® Varying architectures of base learners improves diversity.

® \We propose two algorithms to effectively search for these architectures.
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Summary and future directions

® Varying architectures of base learners improves diversity.
® \We propose two algorithms to effectively search for these architectures.

® NES searches for more diverse ensembles without ever explicitly defining diversity.
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Summary and future directions

® Varying architectures of base learners improves diversity.

® \We propose two algorithms to effectively search for these architectures.

We show improved performance and better calibration for in-distribution and
shifted data.

NES searches for more diverse ensembles without ever explicitly defining diversity.
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Summary and future directions

® Varying architectures of base learners improves diversity.

® \We propose two algorithms to effectively search for these architectures.

NES searches for more diverse ensembles without ever explicitly defining diversity.

We show improved performance and better calibration for in-distribution and
shifted data.

In the future:
® NES-BO: NES via Bayesian Optimization.
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Summary and future directions

® Varying architectures of base learners improves diversity.

® \We propose two algorithms to effectively search for these architectures.

We show improved performance and better calibration for in-distribution and
shifted data.

In the future:
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Summary and future directions

® Varying architectures of base learners improves diversity.

® \We propose two algorithms to effectively search for these architectures.

We show improved performance and better calibration for in-distribution and
shifted data.

In the future:
® NES-BO: NES via Bayesian Optimization.
e Differentiable NES.
® NES in joint NAS and HPO spaces.

NES searches for more diverse ensembles without ever explicitly defining diversity.
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