Hyperparameter Optimization and AutoML

Bernd Bischl

SLDS - LMU Munich

Marius Lindauer

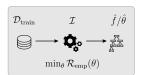
TNT - Leibniz University Hannover

www.slds.stat.uni-muenchen.de

www.tnt.uni-hannover.de

ML BASICS - RISK MINIMIZATION

► Data
$$\mathcal{D} = \left(\left(\mathbf{x}^{(1)}, y^{(1)} \right), \dots, \left(\mathbf{x}^{(n)}, y^{(n)} \right) \right) \in (\mathcal{X} \times \mathcal{Y})^n$$


Choice

- Hypo space \mathcal{H} with candidate model $f_{\theta}: \mathcal{X} \to \mathbb{R}^{g}$
- Loss $L: \mathcal{Y} \times \mathbb{R}^g \to \mathbb{R}_0^+$; defines empirical risk

$$\mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} L\left(\boldsymbol{y}^{(i)}, f\left(\boldsymbol{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$$

12 Loss Surface

- Usually some regularization term to constrain overfitting
- Some optimizer like GD

Result

• Learner is defined: $\mathcal{I} : \mathcal{D} \to \Theta$; finds best params via:

$$oldsymbol{\hat{ heta}} \in rgmin_{ heta \in oldsymbol{\Theta}} \mathcal{R}_{ ext{emp}}(oldsymbol{ heta})$$

Conclusion: ML is neither magic, nor general AI, but parametrized curve fitting – which can be a very powerful tool

ML BASICS - GENERALIZATION ERROR

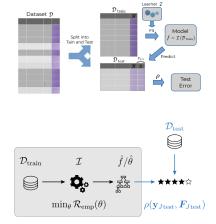
Given

- ► Train-test-split $\mathcal{D}_{train} \stackrel{.}{\cup} \mathcal{D}_{test} = \mathcal{D}$
- Fitted model \hat{f} from $\mathcal{D}_{\text{train}}$

Choice

Performance metric ρ(y_{Jtest}, F_{Jtest}) F_{Jtest} is pred-matrix w.r.t. D_{test} and y_{Jtest} is true label vector

Often:

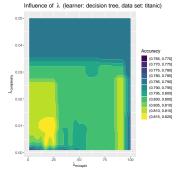

$$\rho_{L}(\mathbf{y}_{J_{\text{test}}}, F_{J_{\text{test}}}) = \frac{1}{n_{\text{test}}} \sum_{i=1}^{n_{\text{test}}} L\left(\mathbf{y}_{J_{\text{test}}}^{(i)}, F_{J_{\text{test}}}^{(i)}\right)$$

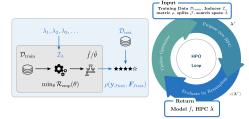
Result

• Assessment of how well \hat{f} generalizes:

$$\widehat{\textit{GE}} = \rho(\mathbf{y}_{\textit{J}_{\text{test}}},\textit{F}_{\textit{J}_{\text{test}}})$$

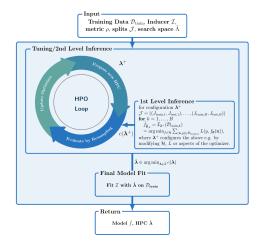
Single train-test-split results in pessimistic bias and high variance of estimator \widehat{GE} (both sets smaller than intended); **Resampling** (CV, subsampling, ...) repeats this process and solves this dilemma

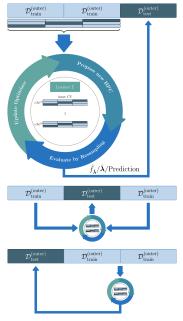

TUNING - HYPERPARAMETER OPTIMIZATION


- Hyperparameter configuration λ configures *I*_λ and strongly influences model quality
- Examples: Regularization constants, optimizer settings, model component types, ...
- Tuning / HPO: Find best HPC with optimal GE

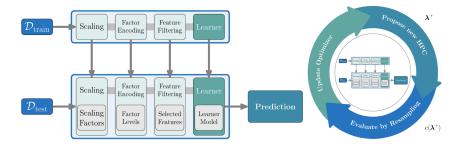
 $\hat{\boldsymbol{\lambda}} \in \mathop{\arg\min}_{\boldsymbol{\lambda} \in \bar{\boldsymbol{\Lambda}}} \boldsymbol{c}(\boldsymbol{\lambda}) \quad \text{with} \quad \boldsymbol{c}(\boldsymbol{\lambda}) \coloneqq \widehat{\textit{GE}}(\mathcal{I}, \mathcal{J}, \boldsymbol{\rho}, \boldsymbol{\lambda})$

 ${\mathcal J}$ is train-test splits, $\tilde{\Lambda}$ is search space

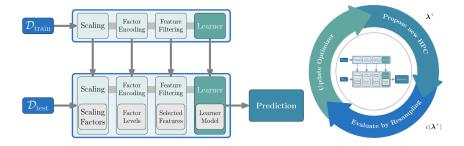

Expensive, noisy, black box problem


TUNING - BILEVEL INFERENCE

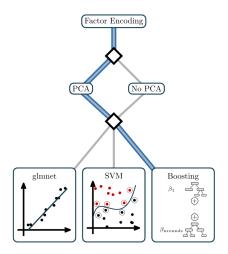
- Tight connection between ML and HPO
- Finding is still risk minimization w.r.t. (hyper)parameters
- First level / ML: find optimal params θ of model f w.r.t. R_{emp}
- Second level / HPO: find optimal HPs $\hat{\lambda}$ w.r.t. \widehat{GE}



TUNING - NESTED RESAMPLING


- To ensure unbiased estimation of GE, also tuned HPC λ̂ need to be evaluated on an independent test set
- We need additional resampling step to prevent optimistic bias
- Combo of inner and outer resampling loop is called nested resampling
- Most common are train-valid-test and nested CV

- ML typically has several data transformation steps before model fit
- If steps are in succession, data flows through linear pipeline
- NB: Each node has a train and predict step and learns params
- And usually has HPs


- ML typically has several data transformation steps before model fit
- If steps are in succession, data flows through linear pipeline
- NB: Each node has a train and predict step and learns params
- And usually has HPs

Pipelines are required to embed full model building into CV to avoid overfitting and biased evaluation!

- Further flexibility by representing pipeline as DAG
- ► Single source accepts D_{train}, single sink returns predictions
- Each node represents a preprocessing operation, a learner, a postprocessing operation or controls data flow
- Can be used to implement ensembles, operator selection,

. . .

- HPs of linear pipeline are the joint set of all HPs of its contained nodes:
 Λ = Λ
 _{op,1} ×···× Λ
 _{op,k} × Λ
 _I
- HP space of a DAG is more complex: Depending on branching / selection different nodes and HPs are active
 - \rightarrow hierarchical search space

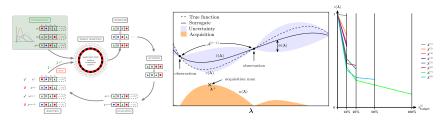
Name	Type	Bounds/Values	Trafo
encoding	С	one-hot, impact	
♦ pca	С	PCA, no PCA	
♦ learner	\mathbf{C}	glmnet, SVM,	
		Boosting	
if learner =	glmnet		
s	R	[-12, 12]	2^x
alpha	R	[0, 1]	-
if learner =	SVM		
cost	R	[-12, 12]	2^x
gamma	R	[-12, 12]	2^x
if learner =	Boosti	ng	
eta	R	[-4, 0]	10^x
nrounds	Ι	$\{1, \ldots, 5000\}$	-
max_depth	I	$\{1,, 20\}$	-

Search Space $\tilde{\Lambda}$

_

- HPs of linear pipeline are the joint set of all HPs of its contained nodes:
 Λ = Λ
 [˜]_{op,1} ×···× Λ
 [˜]_{op,k} × Λ
 [˜]_I
- HP space of a DAG is more complex: Depending on branching / selection different nodes and HPs are active
 - ightarrow hierarchical search space

Name	Type	Bounds/Values	Trafo
encoding	С	one-hot, impact	
♦ pca	С	PCA, no PCA	
♦ learner	\mathbf{C}	glmnet, SVM,	
		Boosting	
if learner =	glmnet		
s	R	[-12, 12]	2^x
alpha	\mathbf{R}	[0, 1]	-
if learner =	SVM		
cost	R	[-12, 12]	2^x
gamma	R	[-12, 12]	2^x
if learner =	Boosti	ng	
eta	R	[-4, 0]	10^x
nrounds	Ι	$\{1, \ldots, 5000\}$	-
max_depth	I	$\{1,, 20\}$	-


Search Space I

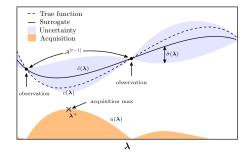
A graph that includes many preprocessing steps and learner types can be flexible enough to work on a large number of data sets

Combining such graph with an efficient tuner is key in AutoML!

HPO – MANY APPROACHES

- Evolutionary algorithms
- Bayesian / model-based optimization
- Multi-fidelity optimization, e.g. Hyperband

HPO methods can be characterized by:

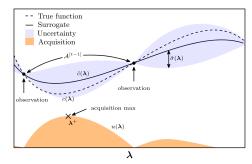

- how the exploration vs. exploitation trade-off is handled
- ► how the inference vs. search trade-off is handled

Further aspects: Parallelizability, local vs. global behavior, handling of noisy observations, multifidelity and search space complexity.

OPTIMIZATION – BAYESIAN OPTIMIZATION

BO sequentially iterates:

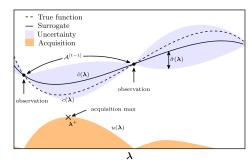
- 1. Approximate $\lambda \mapsto c(\lambda)$ by (nonlin) regression model $\hat{c}(\lambda)$, from evaluated configurations (archive / history)
- 2. Propose candidates via optimizing an acquisition function that is based on the surrogate $\hat{c}(\lambda)$
- 3. Evaluate candidate(s) proposed in 2, then go to 1



Important trade-off: **Exploration** (evaluate candidates in under-explored areas) vs. **exploitation** (search near promising areas)

OPTIMIZATION – BAYESIAN OPTIMIZATION

Surrogate Model:


- Probabilistic modeling of C(λ) ~ (ĉ(λ), ô(λ)) with posterior mean ĉ(λ) and uncertainty ô(λ).
- Typical choices for numeric spaces are Gaussian Processes; random forests for mixed spaces; Bayesian neural networks

OPTIMIZATION – BAYESIAN OPTIMIZATION

Surrogate Model:

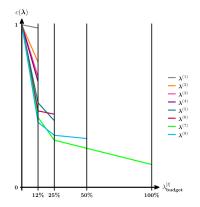
- Probabilistic modeling of C(λ) ~ (ĉ(λ), ô(λ)) with posterior mean ĉ(λ) and uncertainty ô(λ).
- Typical choices for numeric spaces are Gaussian Processes; random forests for mixed spaces; Bayesian neural networks

Acquisition Function:

- ► Balance exploration (high $\hat{\sigma}$) vs. exploitation (low \hat{c}).
- ► Lower confidence bound (LCB): $a(\lambda) = \hat{c}(\lambda) \kappa \cdot \hat{\sigma}(\lambda)$
- Expected improvement (EI): $a(\lambda) = \mathbb{E} \left[\max \{ c_{\min} C(\lambda), 0 \} \right]$ where (c_{\min} is best cost value from archive)
- Optimizing $a(\lambda)$ is still difficult, but cheap(er)

OPTIMIZATION – FURTHER BO VARIANTS

High-dimensional and complex spaces


- Often, learner or pipelines are highly configurable and contain dependencies
- Fitting accurate and fast surrogates can be challenging and special surrogates may be needed (e.g., GPs with special kernels, RFs as model or BNNs with special embeddings)

Parallelization

- In standard formulation, only one point is proposed per iter and evaluated; inefficient if parallel resources are available
- Many batch proposal variants exist (batch BO)

OPTIMIZATION – SUCCESSIVE HALVING

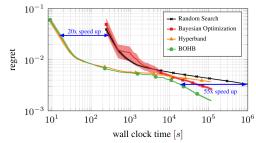
- Races down set of HPCs to the best
- Idea: Discard bad configurations early
- Train HPCs with fraction of full budget (SGD epochs, training set size); the control parameter for this is called multi-fidelity HP
- Continue with better half of HPCs (w.r.t GE); with doubled budget
- Repeat until budget depleted or single HPC remains

OPTIMIZATION – HYPERBAND

Problem with SH

 Good HPCs could be killed off too early, depends on evaluation schedule

Solution: Hyperband


- Repeat SH with different start budgets λ^[0]_{budget} and initial number of HPCs p^[0]
- Each SH run is called bracket
- Each bracket consumes ca. the same budget

	bracket 3	
t	$\lambda^{[t]}_{ ext{budget}}$	$p_3^{[t]}$
0	1	8
1	2	4
2	4	2
3	8	1
	bracket 2	
t	$\lambda_{ ext{budget}}^{[t]}$	$\frac{p_2^{[t]}}{6}$
0	2	6
1	4	3
2	8	1
	bracket 1	
t	$\lambda^{[t]}_{ ext{budget}}$	$p_1^{[t]}$
0	4	4
1	8	2
	bracket 0	
t	$\lambda_{ ext{budget}}^{[t]}$	$p_0^{[t]}$
0	8	4

OPTIMIZATION – BOHB

Bayesian Optimization (BO) and Hyperband (HB)

- Strength of HB: Multifidelity / discard bad configs early
 - \Rightarrow Most visible *early* in optimization
- Strength of BO: Sample efficiency
 - \Rightarrow Most visible *later*, when initial samples result in better surrogate
- BOHB tries to combine these strengths

Optimization of six HPs of a neural network; shown is the regret (over global best known performance) of the best model found by each method at a given time. From: Falkner et al. *BOHB: Robust and Efficient Hyperparameter Optimization at Scale*, ICML 2018

OPTIMIZATION – BOHB – ALGORITHM

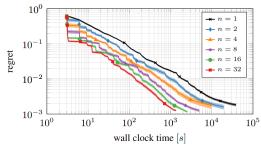
General template

- Evaluates HPOs with SH as in HB
- Instead of random samples, configurations are chosen by BO
- The model is fitted to performance values of highest fidelity for which enough data is available

Point proposal with KDE

- Uses multi-dim kernel density estimator
- Divide archive into 2 groups and fit KDE on each

 $l(\lambda) = p(c < \alpha | \lambda)$ ('good' configurations)

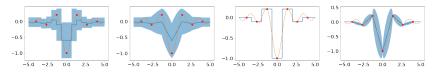

 $g(\lambda) = p(c \ge \alpha | \lambda)$ ('bad' configurations)

(α is pre-defined percentile)

• Can show: maximizing EI is equivalent to maximizing ratio $\frac{l(\lambda)}{q(\lambda)}$

OPTIMIZATION – BOHB – VERDICT

- Strong performance both early and late during optimization ("anytime performance")
- ► Flexible: Can be parallelized by using parallel HB methods, and noisier optimization of ^{*I*(λ)}/_{*g*(λ)}

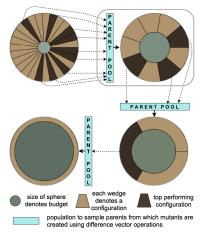


Performance of parallel BOHB on surrogate benchmark.

From: Falkner et al. *BOHB: Robust and Efficient Hyperparameter Optimization at Scale*, ICML 2018

OPTIMIZATION – BOHB'S SUCCESSORS: SMAC-HB

- The long-term performance heavily depends on the predictive quality of the surrogate
- Several papers indicate, other models than KDE can perform better
- ► SMAC-HB combines HB and BO with RFs (and GPs) as a surrogate
- ► On HPOBench, SMAC-HB is one of the strongest HPO approaches

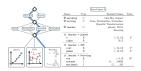


(a) w/ bootstrapping & middle splits (b) w/ bootstrapping & random splits
(c) w/o bootstrapping & middle splits (d) w/o bootstrapping & random splits

Lindauer et al. SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization, 2021

OPTIMIZATION – BOHB'S SUCCESSORS: DEHB

- BO's overhead is often fairly large
- Evolutionary algorithms (EA) have much smaller overhead
- One of the strongest EAs is differential evolution (DE)



From: Awad et al. *DEHB: Evolutionary Hyberband for Scalable, Robust and Efficient Hyperparameter Optimization,* IJCAI 2021

PRACTICAL ASPECTS OF HPO

- Choosing resampling
 - No. of observations, i.i.d assumption for data sampling process
- Choosing performance measure
 - Desired implications when applying the model in practice
- Choosing a pipeline and search space
 - Numeric HPs of arbitrary size should be tuned on log scale
 - Size of search space results in different trade-offs: too small may miss out well performing HPCs; too large makes optimization more difficult

Plane .	Family			Overgrier
Performance resource for a				
Hen Sparat Grar (HSE)		min	36.90	Mon of the upwell distances between the target solidile g a the probled larget 4.
Hust Realists Error (HMC)		min	$(0,\infty)$	Mare robust than MEE, since it is loss inflamentily large error
N ²	- 雪島寺	-	$[-\infty, 3]$	Compare the sum of asparat errors (502) of the model to a or struct baseline model
	als EET Verset 151-s der Serama berart			
NC news	SPA = print	-	26.0	The Problem Party has many elemenations of the position rise one and that as 17
	$PPR = \frac{11}{11017}$	min	(0,0)	False Positive Estin. how many observations of the regarine of it are follow conferred on 17
	226 - 1020	-	16.0	You Plagation Rule: Non-many share-polone of the registree of It are prepared as 17
	FIG. = effecte	min	[0,0]	False highline flow: how many absorations of the positive of 3 minute block multiple as M
	PUT = ribr SPV = ribr			
Fi		141	16.0	J, is the harmonic mean of PPV and TPR. Equately such a independent characteristic sectors and the sector of the s
Cod musers	$\sum_{i=1}^{n} C(y^{(i)}, y^{(i)})$	min	$(0,\infty)$	Cost of homest prefering head or a bourly net regative a strate of a links of a 2012
Onix Score (35)	$\lim_{t\to\infty}\sum_{i=1}^{t}\sum_{j=1}^{t}\sum_{k=1}^{t}\left[f_{k}(\boldsymbol{y}^{(i)})-d_{k}(\boldsymbol{y}^{(i)})\right]^{2}$	-	$\left[0.1 \right]$	Moneya assess distances of probabilities from the one-hot -
Explana (A.)	al-Style-Massimile	min.		A.k.a. Bernadi, historial or cross-arcropy loss

PRACTICAL ASPECTS OF HPO

- Choosing HPO algorithm
 - For few HPS (1-2), grid search could be used for having a controlled study (but is not recommended efficiency-wise)
 - BO with GPs for up to 10 numeric HPs
 - BO with RFs handle mixed HP spaces
 - Random search and Hyperband work well as long as the "effective" dimension is low
 - EAs are somewhat in-between BO and RS, can handle very complex spaces, but less sample efficient than BO
 - Also: use something that's stable and robust! More an aspect of the implementation than the algo!
- ► When to terminate HPO
 - Specify a certain amount of runtime/budget beforehand
 - Set a lower bound regarding GE
 - Terminate if performance improvement stagnates
 - Terminate if acquisition function values reach a threshold (BO)

PRACTICAL ASPECTS OF HPO

Warm starts

- Evaluations (e.g., weight sharing of neural networks)
- Optimization (intializing with HPCs that worked well before)
- Control of execution
 - Parallelizability of HPO algorithms differs strongly
 - HPO execution can be parallelized at different levels (outer resampling, iteration, evaluation, inner resampling, model fit)

More on practical aspects \rightarrow Bischl, ..., Lindauer. *Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges*, under review, 2021

WHAT DOES ACTUALLY WORK?

Problem:

- New HPO methods are proposed frequently
- Benchmarking new methods and SOTA algorithms is expensive: Papers often only use toy problems, synthetic functions or a very limited number of real world problems
 - \rightarrow No clear indication of what really works in practice!

Solution:

 Easy to use and reproducible HPO benchmark suites with practically relevant problems for comparison of HPO methods

HPO BENCHMARK SUITES

HPOBench [Eggensperger et al. NeurIPS'21 Datasets and Benchmarks Track]

- Successor of HPOlib
- Collection of 12 benchmark families; in total > 100 HPO problems
- Mix of tabular, surrogate and real benchmark problems
- Also allows for benchmarking multifidelity HPO methods
- Benchmarks are containerized making them easily reproducible

YAHPO Gym [Pfisterer, Schneider et al. 2021]

- Collection of 9 benchmark families constituting over 700 multifidelity multicriteria HPO problems
- Surrogate benchmarks using neural-network based instance surrogates
- ► fast inference (< 50 ms) & low memory footprint (~ 5 MB)

SYSTEMATIC AUTOML BENCHMARK

What is it?

 Open source framework for benchmarking state-of-the-art AutoML systems using OpenML datasets

Why?

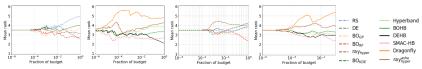
► Fair and easy-to-use comparison → open source – open science

Who is involved?

Some Conclusions:

- No AutoML system consistently outperforms others
- Tuned random forest is very competitive

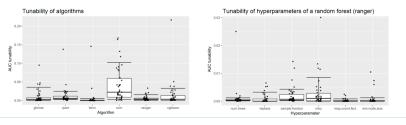
Gijsbers et al. An Open Source AutoML Benchmark, AutoML WS at ICML 2019


H_O

AutoMI

AUTOML – CHALLENGES

 Most efficient HPO approach? Good benchmarks often missing (but things are slowly changing for the better)

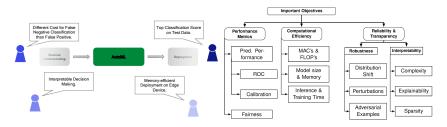

Mean rank-over-time across 32 repetitions for black-box and multi-fidelity optimizers.

Eggensperger et al. HPOBench, NeurIPS'21 Datasets and Benchmarks Track

- How to integrate human a-priori knowledge?
- How can we best (computationally) transfer "experience" into AutoML? Warmstarts, learned search spaces, etc.
- Multi-objective goals, including model intepretability
- AutoML as a process is too much of a black-box, hurts adoption

IMPORTANCE OF HYPERPARAMETERS

- For users very often unclear, what to tune and how to setup optimization.
- Addresses problem of HP importance, optimal defaults and empirical design of search spaces
- Theoretical definitions for above quantities; computation from large ML databases and aggregate of surrogates



Tunability of an algorithm S_k : $d_k := S_k(\theta_{def}) - S_k(\theta_k^*)$ Tunability of a parameter $\theta^{(i)}$: $d_k^{(i)} := S_k(\theta_{def}) - S_k(\theta_k^{(i)\star})$

Probst, Boulesteix, Bischl. Tunability: Importance of Hyperparameters of Machine Learning Algorithms, JMLR 2019 van Rijn, Hutter. Hyperparameter Importance Across Datasets, KDD 2018

MANY STAKEHOLDERS - MULTIPLE OBJECTIVES

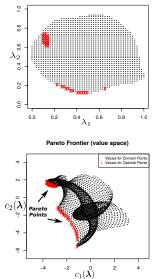
• Optimizing a model only for prediction is often unrealistic.

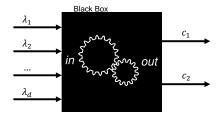
Some tasks can't be distilled into one single metric.

Stakeholders in ML process like different properties of model.

Horn, Bischl et al. Multi-objective parameter configuration of machine learning algorithms using model-based optimization, 2016 IEEE symposium series on computational intelligence

MULTI-OBJ. HYPERPARAMETER OPTIMIZATION



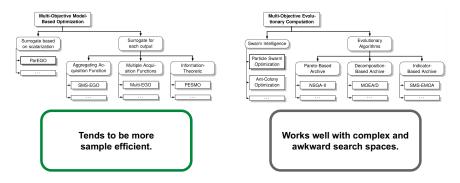

Image source: Daniel Hernández-Lobato

- $\blacktriangleright \mathbf{c}(\boldsymbol{\lambda}) = (c_1(\boldsymbol{\lambda}), ..., c_m(\boldsymbol{\lambda}))$
- λ dominates $ilde{\lambda}$ if

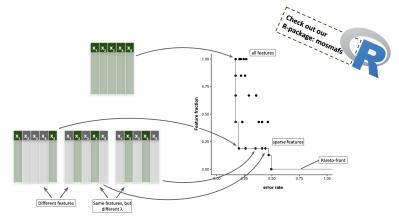
$$orall i \in \{1,...,m\}: c_i(oldsymbol{\lambda}) \leq c_i(ilde{oldsymbol{\lambda}})$$
 and $\exists i \in \{1,...,m\}: c_i(oldsymbol{\lambda}) < c_i(ilde{oldsymbol{\lambda}})$

Set of non-dominated solutions:

$$\Lambda^*\coloneqq\{\boldsymbol{\lambda}\in\tilde{\boldsymbol{\Lambda}}| \nexists\tilde{\boldsymbol{\lambda}}\in\tilde{\boldsymbol{\Lambda}}:\tilde{\boldsymbol{\lambda}}\text{ dominates }\boldsymbol{\lambda}\}$$

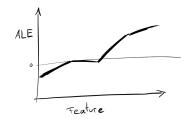

POPULAR METHODS FOR MULTI-OBJ. AUTOML

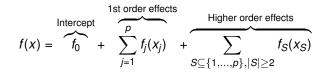
Model-Based Optimization


Evolutionary Algorithms

Horn, Bischl et al. Model-based multi-objective optimization: taxonomy, multi-point proposal, toolbox and benchmark, International Conference on Evolutionary Multi-Criterion Optimization 2015

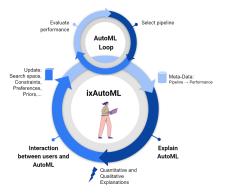
MULTI-OBJ. FEATURE SELECTION AND HPO


Should we first select features or first optimize hyperparameters? —> Do both simultaneously!


Binder, Moosbauer, Bischl et al. Multi-objective hyperparameter tuning and feature selection using filter ensembles, GECCO 2020

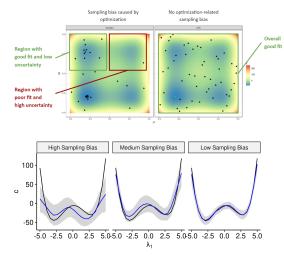
QUANTIFYING COMPLEXITY FOR IML

- Minimizing model complexity maximizes interpretability
- Measure model complexity based on FANOVA in model-agnostic way: number of features, interaction strength, main effect complexity
- Enables multi-objective model-selection for interpretability


FANOVA Decomposition:

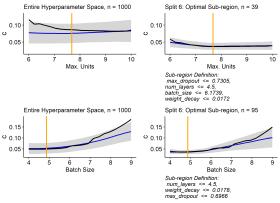
Molnar, et al. Quantifying Interpretability of Arbitrary ML Models Through Functional Decomposition, ECML 2019

HUMAN-CENTERED AUTOML


- Fully automated ML design can also receive pushback:
 - How to verify results (i.e., ML pipelines)?
 - How to bring in human expertise?
 - How to integrate into prototype-driven workflows?
- Human-centered AutoML instead of fully automated ML?

EXPLAINABLE HPO

Goal: Explain HPO via Partial Dependence Plots (PDPs)

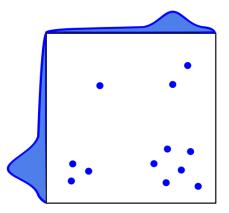

- Problem: Optimization traces are not *iid* samples
- Low reliability / large uncertainties in the PDP estimation
- Can't (easily) change sampling behavior (optimization)

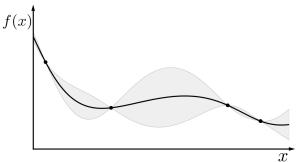
Black: true function; Blue: PDP; Grey area: uncertainty

EXPLAINABLE HPO

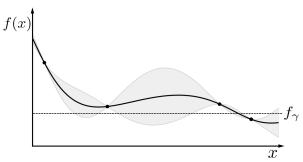
Solution: PDP uncertainty measure + recursively partition search space to get low-variance explanations in interesting areas

► Loss (variance across projected dimension):

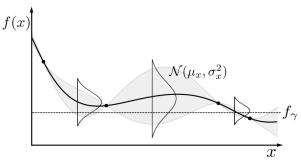

$$L\left(\boldsymbol{\lambda}_{S},\mathcal{N}'\right) = \sum_{i \in \mathcal{N}} \left(\hat{s}^{2}\left(\boldsymbol{\lambda}_{S},\boldsymbol{\lambda}_{C}^{(i)}\right) - \hat{s}_{S|\mathcal{N}'}^{2}\left(\boldsymbol{\lambda}_{S}\right)\right)^{2}$$

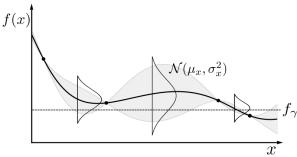

Splitting criterion: $\mathcal{R}_{L2}(\mathcal{N}') = \sum_{g=1}^{G} L(\lambda_{S}^{(g)}, \mathcal{N}')$

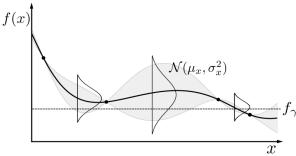
Moosbauer et al. Explaining HPO via Partial Dependence Plots, NeurIPS'21


INTEGRATING HUMAN A-PRIORI KNOWLEDGE

- ML practitioners often have an intuition for promising hyperparameter configurations
- → Sampling of configurations should focus in these regions
- However, practitioners can also be wrong with their intuition
- Over time, we should trust the evaluated configurations and the surrogate more than the human expert




Instead of modelling f(x) (a.k.a. c(λ)), we model whether a configuration is "good" or "bad" (see KDE)


Instead of modelling f(x) (a.k.a. c(λ)), we model whether a configuration is "good" or "bad" (see KDE)

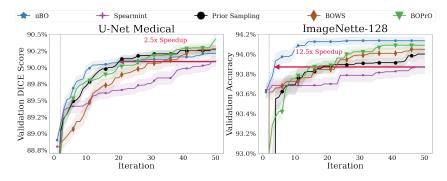
- Instead of modelling f(x) (a.k.a. c(λ)), we model whether a configuration is "good" or "bad" (see KDE)
- Using the Gaussian distribution of a GP, we can determine the probability of being good ĉ_g

- Instead of modelling f(x) (a.k.a. c(λ)), we model whether a configuration is "good" or "bad" (see KDE)
- Using the Gaussian distribution of a GP, we can determine the probability of being good \hat{c}_q
- Combine with human prior on being a promising configuration P_g $g(\lambda) \propto P_g(\lambda) \hat{c}_g(\lambda)^{rac{t}{eta}}$

- Instead of modelling f(x) (a.k.a. c(λ)), we model whether a configuration is "good" or "bad" (see KDE)
- Using the Gaussian distribution of a GP, we can determine the probability of being good \hat{c}_q
- Combine with human prior on being a promising configuration P_g

$$g(oldsymbol{\lambda}) \propto P_g(oldsymbol{\lambda}) \hat{c}_g(oldsymbol{\lambda})^{rac{\iota}{eta}}$$

• Over time *t*, the influence of the human prior gets weaker


- BOPro has several assumptions on how to model the observations
- π BO is simpler: augment the the acquisition function of BO by a human prior preference

$$a_{\pi}(\boldsymbol{\lambda}) = a(\boldsymbol{\lambda})\pi(\boldsymbol{\lambda})^{\frac{\beta}{t}}$$

Advantages of π BO:

- Can be combined with any acquisition function
- Same convergence guarantees as with the original acquisition functions (e.g., EI)
- Can again recover from misleading a-priori knowledge

Hvarfner et al. πBO : Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization, under review, 2021

Hvarfner et al. π BO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization, under review, 2021

CONCLUSIONS

- Sample efficiency is key!
- Can be achieved by different sampling or evaluation strategies
- Multi-objective HPO (/AutoML) is important in practice
- Never forget the human in the loop!

CONCLUSIONS

- Sample efficiency is key!
- Can be achieved by different sampling or evaluation strategies
- Multi-objective HPO (/AutoML) is important in practice
- Never forget the human in the loop!

Have Fun at the AutoML Fall School!