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ML BASICS - RISK MINIMIZATION
Given

I Data D =
((

x(1), y (1)
)
, . . . ,

(
x(n), y (n)

))
∈ (X × Y)n

Choice

I Hypo spaceH with candidate model fθ : X → Rg

I Loss L : Y ×Rg → R+
0; defines empirical risk

Remp(θ) =
n∑

i=1

L
(
y (i), f

(
x(i) | θ

))
I Usually some regularization term to constrain overfitting

I Some optimizer like GD

Result

I Learner is defined: I : D → Θ; finds best params via:

θ̂ ∈ arg min
θ∈Θ

Remp(θ)

Intercept

−2

−1

0

1
2

Slope

0.0

0.5

1.0

1.5

S
um

 of A
bsolute E

rrors

5

10

15

20

L1 Loss Surface

Intercept

−2

−1

0

1
2

Slope

0.0

0.5

1.0

1.5

S
S

E
20

40

60

80

100

L2 Loss Surface

Conclusion: ML is neither magic, nor general AI, but parametrized curve fitting –
which can be a very powerful tool
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ML BASICS - GENERALIZATION ERROR
Given

I Train-test-split Dtrain ∪̇ Dtest = D
I Fitted model f̂ from Dtrain

Choice

I Performance metric ρ(yJtest , FJtest )
FJtest is pred-matrix w.r.t. Dtest and yJtest is true label vector

I Often:

ρL(yJtest , FJtest ) =
1

ntest

ntest∑
i=1

L
(
y(i)

Jtest
, F (i)

Jtest

)
Result

I Assessment of how well f̂ generalizes:

ĜE = ρ(yJtest , FJtest )

Fit Model
   

Predict

Test 
Error

Dataset 

Split into
Tain and Test

Repeat = Resample

Learner 

Single train-test-split results in pessimistic bias and high variance of estimator ĜE (both
sets smaller than intended); Resampling (CV, subsampling, ...) repeats this process
and solves this dilemma
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TUNING - HYPERPARAMETER OPTIMIZATION
I Hyperparameter configuration λ configures Iλ

and strongly influences model quality

I Examples: Regularization constants, optimizer
settings, model component types, . . .

I Tuning / HPO: Find best HPC with optimal ĜE

λ̂ ∈ arg min
λ∈Λ̃

c(λ) with c(λ) := ĜE (I,J , ρ,λ)

J is train-test splits, Λ̃ is search space

I Expensive, noisy, black box problem
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4 / 41



TUNING - BILEVEL INFERENCE

I Tight connection between
ML and HPO

I Finding λ̂ is still risk
minimization w.r.t.
(hyper)parameters

I First level / ML: find
optimal params θ of model
f w.r.t. Remp

I Second level / HPO: find
optimal HPs λ̂ w.r.t. ĜE
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TUNING - NESTED RESAMPLING

I To ensure unbiased estimation of ĜE ,
also tuned HPC λ̂ need to be
evaluated on an independent test set

I We need additional resampling step to
prevent optimistic bias

I Combo of inner and outer resampling
loop is called nested resampling

I Most common are train-valid-test and
nested CV
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PIPELINES AND AUTOML

I ML typically has several data transformation steps before model fit
I If steps are in succession, data flows through linear pipeline
I NB: Each node has a train and predict step and learns params
I And usually has HPs

Pipelines are required to embed full model building into CV to
avoid overfitting and biased evaluation!
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PIPELINES AND AUTOML

I Further flexibility by
representing pipeline as DAG

I Single source accepts Dtrain,
single sink returns predictions

I Each node represents a
preprocessing operation, a
learner, a postprocessing
operation or controls data flow

I Can be used to implement
ensembles, operator selection,
. . .
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PIPELINES AND AUTOML

I HPs of linear pipeline are the joint set
of all HPs of its contained nodes:
Λ̃ = Λ̃op,1 × · · · × Λ̃op,k × Λ̃I

I HP space of a DAG is more complex:
Depending on branching / selection
different nodes and HPs are active
→ hierarchical search space

A graph that includes many preprocessing steps and learner types can
be flexible enough to work on a large number of data sets

Combining such graph with an efficient tuner is key in AutoML!
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HPO – MANY APPROACHES
I Evolutionary algorithms
I Bayesian / model-based optimization
I Multi-fidelity optimization, e.g. Hyperband

HPO methods can be characterized by:

I how the exploration vs. exploitation trade-off is handled
I how the inference vs. search trade-off is handled

Further aspects: Parallelizability, local vs. global behavior, handling of
noisy observations, multifidelity and search space complexity.
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OPTIMIZATION – BAYESIAN OPTIMIZATION

BO sequentially iterates:

1. Approximate λ 7→ c(λ) by
(nonlin) regression model ĉ(λ),
from evaluated configurations
(archive / history)

2. Propose candidates via
optimizing an acquisition
function that is based on the
surrogate ĉ(λ)

3. Evaluate candidate(s)
proposed in 2, then go to 1

Important trade-off: Exploration (evaluate candidates in under-explored
areas) vs. exploitation (search near promising areas)
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OPTIMIZATION – BAYESIAN OPTIMIZATION
Surrogate Model:
I Probabilistic modeling of

C(λ) ∼ (ĉ(λ), σ̂(λ)) with
posterior mean ĉ(λ) and
uncertainty σ̂(λ).

I Typical choices for numeric
spaces are Gaussian
Processes; random forests
for mixed spaces; Bayesian
neural networks

Acquisition Function:

I Balance exploration (high σ̂) vs. exploitation (low ĉ).
I Lower confidence bound (LCB): a(λ) = ĉ(λ)− κ · σ̂(λ)
I Expected improvement (EI): a(λ) = E

[
max {cmin − C(λ), 0}

]
where (cmin is best cost value from archive)

I Optimizing a(λ) is still difficult, but cheap(er)
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OPTIMIZATION – FURTHER BO VARIANTS

High-dimensional and complex spaces

I Often, learner or pipelines are highly configurable and contain
dependencies

I Fitting accurate and fast surrogates can be challenging and special
surrogates may be needed (e.g., GPs with special kernels, RFs as
model or BNNs with special embeddings)

Parallelization

I In standard formulation, only one point is proposed per iter and
evaluated; inefficient if parallel resources are available

I Many batch proposal variants exist (batch BO)
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OPTIMIZATION – SUCCESSIVE HALVING

I Races down set of HPCs to the best
I Idea: Discard bad configurations early
I Train HPCs with fraction of full budget

(SGD epochs, training set size); the
control parameter for this is called
multi-fidelity HP

I Continue with better half of HPCs
(w.r.t ĜE ); with doubled budget

I Repeat until budget depleted or single
HPC remains

14 / 41



OPTIMIZATION – HYPERBAND

Problem with SH
I Good HPCs could be killed off too early,

depends on evaluation schedule

Solution: Hyperband
I Repeat SH with different start budgets λ[0]

budget

and initial number of HPCs p[0]

I Each SH run is called bracket
I Each bracket consumes ca. the same budget
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OPTIMIZATION – BOHB
Bayesian Optimization (BO) and Hyperband (HB)

I Strength of HB: Multifidelity / discard bad configs early
⇒ Most visible early in optimization

I Strength of BO: Sample efficiency
⇒ Most visible later, when initial samples result in better surrogate

I BOHB tries to combine these strengths

Optimization of six HPs of a neural network; shown is the regret (over global best known
performance) of the best model found by each method at a given time.
From: Falkner et al. BOHB: Robust and Efficient Hyperparameter Optimization at Scale,
ICML 2018
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OPTIMIZATION – BOHB – ALGORITHM
General template

I Evaluates HPOs with SH as in HB
I Instead of random samples, configurations are chosen by BO
I The model is fitted to performance values of highest fidelity for

which enough data is available

Point proposal with KDE

I Uses multi-dim kernel density estimator
I Divide archive into 2 groups and fit KDE on each

l(λ) = p(c < α|λ) (’good’ configurations)

g(λ) = p(c ≥ α|λ) (’bad’ configurations)

(α is pre-defined percentile)
I Can show: maximizing EI is equivalent to maximizing ratio l(λ)

g(λ)
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OPTIMIZATION – BOHB – VERDICT

I Strong performance both early and late during optimization
(“anytime performance”)

I Flexible: Can be parallelized by using parallel HB methods, and
noisier optimization of l(λ)

g(λ)

Performance of parallel BOHB on surrogate benchmark.
From: Falkner et al. BOHB: Robust and Efficient Hyperparameter Optimization at Scale,
ICML 2018
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OPTIMIZATION – BOHB’S SUCCESSORS:
SMAC-HB

I The long-term performance heavily depends on the predictive
quality of the surrogate

I Several papers indicate, other models than KDE can perform better
I SMAC-HB combines HB and BO with RFs (and GPs) as a surrogate
I On HPOBench, SMAC-HB is one of the strongest HPO approaches

(a) w/ bootstrapping & middle splits (b) w/ bootstrapping & random splits
(c) w/o bootstrapping & middle splits (d) w/o bootstrapping & random
splits

Lindauer et al. SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter
Optimization, 2021
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OPTIMIZATION – BOHB’S SUCCESSORS: DEHB
I BO’s overhead is often fairly large
I Evolutionary algorithms (EA) have much smaller overhead
I One of the strongest EAs is differential evolution (DE)

From: Awad et al. DEHB: Evolutionary Hyberband for Scalable, Robust and Efficient
Hyperparameter Optimization, IJCAI 2021
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PRACTICAL ASPECTS OF HPO
I Choosing resampling

I No. of observations, i.i.d assumption for data
sampling process

I Choosing performance measure

I Desired implications when applying the model
in practice

I Choosing a pipeline and search space

I Numeric HPs of arbitrary size should be tuned
on log scale

I Size of search space results in different
trade-offs:
too small may miss out well performing HPCs;
too large makes optimization more difficult
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PRACTICAL ASPECTS OF HPO

I Choosing HPO algorithm
I For few HPS (1-2), grid search could be used for having a controlled

study (but is not recommended efficiency-wise)
I BO with GPs for up to 10 numeric HPs
I BO with RFs handle mixed HP spaces
I Random search and Hyperband work well as long as the “effective”

dimension is low
I EAs are somewhat in-between BO and RS, can handle very complex

spaces, but less sample efficient than BO
I Also: use something that’s stable and robust! More an aspect

of the implementation than the algo!

I When to terminate HPO
I Specify a certain amount of runtime/budget beforehand
I Set a lower bound regarding ĜE
I Terminate if performance improvement stagnates
I Terminate if acquisition function values reach a threshold (BO)
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PRACTICAL ASPECTS OF HPO

I Warm starts
I Evaluations (e.g., weight sharing of neural networks)
I Optimization (intializing with HPCs that worked well before)

I Control of execution
I Parallelizability of HPO algorithms differs strongly
I HPO execution can be parallelized at different levels (outer

resampling, iteration, evaluation, inner resampling, model fit)

More on practical aspects→ Bischl, ..., Lindauer. Hyperparameter
Optimization: Foundations, Algorithms, Best Practices and Open
Challenges, under review, 2021
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WHAT DOES ACTUALLY WORK?

Problem:

I New HPO methods are proposed frequently
I Benchmarking new methods and SOTA algorithms is expensive:

Papers often only use toy problems, synthetic functions or a very
limited number of real world problems
→ No clear indication of what really works in practice!

Solution:

I Easy to use and reproducible HPO benchmark suites with
practically relevant problems for comparison of HPO methods
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HPO BENCHMARK SUITES
HPOBench [Eggensperger et al. NeurIPS’21 Datasets and Benchmarks Track]

I Successor of HPOlib
I Collection of 12 benchmark families; in total > 100 HPO problems
I Mix of tabular, surrogate and real benchmark problems
I Also allows for benchmarking multifidelity HPO methods
I Benchmarks are containerized making them easily reproducible

YAHPO Gym [Pfisterer, Schneider et al. 2021]

I Collection of 9 benchmark families constituting over 700 multifidelity
multicriteria HPO problems

I Surrogate benchmarks using neural-network based instance
surrogates

I fast inference (< 50 ms) & low memory footprint (∼ 5 MB)

Others: HPO-B [Arango et al. NeurIPS’21 Datasets and Benchmarks Track]
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SYSTEMATIC AUTOML BENCHMARK

What is it?
I Open source framework for benchmarking

state-of-the-art AutoML systems using
OpenML datasets

Why?
I Fair and easy-to-use comparison
→ open source – open science

Who is involved?

Some Conclusions:
I No AutoML system consistently outperforms

others
I Tuned random forest is very competitive

Gijsbers et al. An Open Source AutoML Benchmark, AutoML WS at ICML 2019
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AUTOML – CHALLENGES

I Most efficient HPO approach? Good benchmarks often missing (but
things are slowly changing for the better)

Mean rank-over-time across 32 repetitions for black-box and multi-fidelity optimizers.

Eggensperger et al. HPOBench, NeurIPS’21 Datasets and Benchmarks Track

I How to integrate human a-priori knowledge?
I How can we best (computationally) transfer “experience” into

AutoML? Warmstarts, learned search spaces, etc.
I Multi-objective goals, including model intepretability
I AutoML as a process is too much of a black-box, hurts adoption
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IMPORTANCE OF HYPERPARAMETERS

I For users very often unclear, what to tune and how to setup optimization.
I Addresses problem of HP importance, optimal defaults and empirical design of

search spaces
I Theoretical definitions for above quantities; computation from large ML databases

and aggregate of surrogates

Tunability of an algorithm Sk :
dk := Sk (θdef )− Sk (θ?k )

Tunability of a parameter θ(i):
d (i)

k := Sk (θdef )− Sk (θ(i)?
k )

Probst, Boulesteix, Bischl. Tunability: Importance of Hyperparameters of Machine Learning Algorithms, JMLR 2019
van Rijn, Hutter. Hyperparameter Importance Across Datasets, KDD 2018
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MANY STAKEHOLDERS - MULTIPLE OBJECTIVES

I Optimizing a model only for prediction is often unrealistic.

AutoMLBusines 
Understanding Deployment

Interpretable Decision 
Making.

Memory-efficient 
Deployment on Edge 

Device.

Top Classification Score 
on Test Data.

Different Cost for False 
Negative Classification 

than False Positive.

I Some tasks can’t be distilled into one single metric.
I Stakeholders in ML process like different properties of model.

Horn, Bischl et al. Multi-objective parameter configuration of machine learning algorithms using model-based optimization, 2016
IEEE symposium series on computational intelligence
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MULTI-OBJ. HYPERPARAMETER OPTIMIZATION
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I c(λ) = (c1(λ), ..., cm(λ))

I λ dominates λ̃ if

∀i ∈ {1, ...,m} : ci (λ) ≤ ci (λ̃)

and ∃i ∈ {1, ...,m} : ci (λ) < ci (λ̃)

I Set of non-dominated solutions:

Λ
∗ := {λ ∈ Λ̃|@λ̃ ∈ Λ̃ : λ̃ dominates λ}
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POPULAR METHODS FOR MULTI-OBJ. AUTOML

Model-Based Optimization

Tends to be more
sample efficient.

Evolutionary Algorithms

Works well with complex and 
awkward search spaces.

Horn, Bischl et al. Model-based multi-objective optimization: taxonomy, multi-point proposal, toolbox and benchmark, International
Conference on Evolutionary Multi-Criterion Optimization 2015
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MULTI-OBJ. FEATURE SELECTION AND HPO

I Should we first select features or first optimize hyperparameters?
−→ Do both simultaneously!

Binder, Moosbauer, Bischl et al. Multi-objective hyperparameter tuning and feature selection using filter ensembles, GECCO 2020
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QUANTIFYING COMPLEXITY FOR IML
I Minimizing model complexity

maximizes interpretability
I Measure model complexity based on

FANOVA in model-agnostic way:
number of features, interaction
strength, main effect complexity

I Enables multi-objective
model-selection for interpretability

FANOVA Decomposition:

f (x) =

Intercept︷︸︸︷
f0 +

1st order effects︷ ︸︸ ︷
p∑

j=1

fj (xj ) +

Higher order effects︷ ︸︸ ︷∑
S⊆{1,...,p},|S|≥2

fS(xS)

Molnar, et al. Quantifying Interpretability of Arbitrary ML Models Through Functional Decomposition, ECML 2019
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HUMAN-CENTERED AUTOML

I Fully automated ML design can
also receive pushback:
I How to verify results

(i.e., ML pipelines)?
I How to bring in human

expertise?
I How to integrate into

prototype-driven workflows?

 Human-centered AutoML
instead of fully automated ML?
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EXPLAINABLE HPO

Goal: Explain HPO via
Partial Dependence Plots
(PDPs)
I Problem: Optimization

traces are not iid
samples

I Low reliability / large
uncertainties in the
PDP estimation

I Can’t (easily) change
sampling behavior
(optimization)

Black: true function;
Blue: PDP; Grey area: uncertainty
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EXPLAINABLE HPO

Solution: PDP
uncertainty measure
+ recursively partition
search space to get
low-variance
explanations in
interesting areas

I Loss (variance across projected dimension):

L
(
λS,N ′

)
=
∑

i∈N

(
ŝ2
(

λS,λ
(i)
C

)
− ŝ2

S|N ′ (λS)
)2

I Splitting criterion:
RL2(N ′) =

∑G
g=1 L(λ(g)

S ,N ′)

Moosbauer et al. Explaining HPO via Partial Dependence Plots, NeurIPS’21
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INTEGRATING HUMAN A-PRIORI KNOWLEDGE

I ML practitioners often have an
intuition for promising
hyperparameter configurations

 Sampling of configurations
should focus in these regions

I However, practitioners can also
be wrong with their intuition

 Over time, we should trust the
evaluated configurations and
the surrogate more than the
human expert
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HUMAN A-PRIORI KNOWLEDGE – BOPRO

I Instead of modelling f (x) (a.k.a. c(λ)), we model whether a
configuration is "good" or "bad" (see KDE)

I Using the Gaussian distribution of a GP, we can determine the
probability of being good ĉg

I Combine with human prior on being a promising configuration PgI Over time t , the influence of the human prior gets weaker

Souza et al. Bayesian Optimization with a Prior for the Optimum, ECML 2021
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I Combine with human prior on being a promising configuration Pg

g(λ) ∝ Pg(λ)ĉg(λ)
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HUMAN A-PRIORI KNOWLEDGE – πBO

I BOPro has several assumptions on how to model the observations
I πBO is simpler: augment the the acquisition function of BO by a

human prior preference

aπ(λ) = a(λ)π(λ)
β
t

Advantages of πBO:

I Can be combined with any acquisition function
I Same convergence guarantees as with the original acquisition

functions (e.g., EI)
I Can again recover from misleading a-priori knowledge

Hvarfner et al. πBO: Augmenting Acquisition Functions with User Beliefs for Bayesian
Optimization, under review, 2021
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HUMAN A-PRIORI KNOWLEDGE – πBO

Hvarfner et al. πBO: Augmenting Acquisition Functions with User Beliefs for Bayesian
Optimization, under review, 2021
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CONCLUSIONS

I Sample efficiency is key!
I Can be achieved by different sampling or evaluation strategies
I Multi-objective HPO (/AutoML) is important in practice
I Never forget the human in the loop!

Have Fun at the AutoML Fall School!
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