Hyperparameter Optimization and AutoML

Bernd Bischl Marius Lindauer
SLDS - LMU Munich TNT - Leibniz University Hannover



www.slds.stat.uni-muenchen.de
www.tnt.uni-hannover.de

ML BASICS - RISK MINIMIZATION

Given
» DataD = ((x",y") ..., (x7,y")) € (X x V)"
Choice

L2 Loss Surface

» Hypo space H with candidate model fy : X — R
» Loss L:Y x RY9 — IR§; defines empirical risk

n

Remp(6) = Z L <y(i)’ f (x(i) | 9))

i=1

» Usually some regularization term to constrain overfitting

> Some optimizer like GD Dirain z flo
Result — Q‘,o —'gﬁf
» Learner is defined: Z : D — @; finds best params via: g Remp ()

6 € argmin Remp(6)
PR

Conclusion: ML is neither magic, nor general Al, but parametrized curve fitting —
which can be a very powerful tool
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ML BASICS - GENERALIZATION ERROR

Given
» Train-test-split Drain U Diest = D Dataset D L ‘L(:O )
_ R . ﬂ i
» Fitted model f from Dyain B :
Choice - ¢
» Performance metric p(Yuess Fuest) B a b
FJ‘eSt is pred-matrix w.r.t. Digst and Yiest is true label vector I = { gf’i'
» Often:
Ntest Drest
_ Z 0l
pL(thesU FJ!est) - ntest . L (leest’ FJtesl) g
- D z f / ()
Result — qo —>§ﬁ? — > HRA KA

> Assessment of how well f generalizes: .
9 ming Remp () P(Y test, Friest)

GE = p(thesn FJIesl)

Single train-test-split results in pessimistic bias and high variance of estimator GE (both
sets smaller than intended); Resampling (CV, subsampling, ...) repeats this process
and solves this dilemma
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TUNING - HYPERPARAMETER OPTIMIZATION

Influence of A (learner: decision tree, data set: titanic)

» Hyperparameter configuration A configures Z
and strongly influences model quality

Accuracy
W ©755.0770)
W ©770.0775
M ©775.0750)
W (780, 0.785]
W (©.785.0790]
M ©7%0,0795)
B ©.755,0800)
M 500, 0505)
B 505, 0510)

(©0810,0815]

(0.815, 0.820]

» Examples: Regularization constants, optimizer
settings, model component types, . . .

> Tuning / HPO: Find best HPC with optimal GE

A cargminc(\) with c(\) = GE(Z, T, p, \)

A€A oo1-
J is train-test splits, A is search space
» Expensive, noisy, black box problem Ao

AL Az, Ag, Dicst

, 8
Dirain Iy 16
e— oco—.iﬁi—»ntm

ming Remp(6) PV tests Friest)

Return
Model f, HPC A
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TUNING - BILEVEL INFERENCE

Tnput
Training Data Dy, Inducer T,
metric p, splits .7, search space A

» Tight connection between e ——r—— 7
ML and HPO

» Finding A is still risk
minimization w.r.t.
(hyper)parameters

» First level / ML: find
optimal params 6 of model gy 40

fWrt Remp Fin.al M\?de% Fit’
» Second level / HPO: f|nd L.j
optimal HPs A w.r.t. GE [‘“,H ]

where A* confign
modifying #, L or

o the op Atz
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TUNING - NESTED RESAMPLING

» To ensure unbiased estimation of éE,
also tuned HPC A need to be
evaluated on an independent test set

» We need additional resampling step to
prevent optimistic bias

» Combo of inner and outer resampling
loop is called nested resampling Dl Do

» Most common are train-valid-test and
nested CV

D(ou‘tlerj l ploter)

‘trai train
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PIPELINES AND AUTOML

> ML typically has several data transformation steps before model fit
P If steps are in succession, data flows through linear pipeline

» NB: Each node has a train and predict step and learns params

» And usually has HPs

Sealin Factor Feature | [SSSES
3 Encoding Filtering EAIDET

g Factor Feature
Scaling

Encoding [ Filtering [ euticy
m—| - Prediction
Scaling Factor Selected Learner
Levels Features Model

Factors
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PIPELINES AND AUTOML

> ML typically has several data transformation steps before model fit

P If steps are in succession, data flows through linear pipeline

» NB: Each node has a train and predict step and learns params
» And usually has HPs

Factor

Scalin, Feature Lear
& || Encoding| | Filtering earner

Scaling

Factor

Feature

Encoding | | Filtering

Factors

(D gy Fcalmg} {

Factor
Levels

Selected
Features

Learner

Learner
Model

Pipelines are required to embed full model building into CV to
avoid overfitting and biased evaluation!
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PIPELINES AND AUTOML

Factor Encoding

» Further flexibility by
representing pipeline as DAG

» Single source accepts Dyain,

. . . -N PCA
single sink returns predictions o 7o)

» Each node represents a
preprocessing operation, a
learner, a postprocessing

operation or controls data flow et

» Can be used to implement
ensembles, operator selection,
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PIPELINES AND AUTOML

» HPs of linear pipeline are the joint set
of all HPs of its contained nodes:
A=Agp1 X xAgpi X Az

» HP space of a DAG is more complex:
Depending on branching / selection
different nodes and HPs are active
— hierarchical search space

Search Space A
Name Type  Bounds/Values Trafo
encoding C one-hot, impact
< pea C PCA, no PCA
< learner C glmnet, SVM,
Boosting

if learner = glmnet

s R [-12,12]

alpha R [0,1]
if learner = SVM

cost R [-12,12]

gamma R [-12,12]
if learner = Boosting

eta R [—4,0]

nrounds 1 {1,...,5000}

max_depth I {1,...,20}

9@

9@
9z
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PIPELINES AND AUTOML

Search Space A
Name Type  Bounds/Values Trafo
» HPs of linear pipeline are the joint set meoting G onohot, impact
. . pca > CA, no PC
of all HPs of its contained nodes: Qlesrmer G glmuet, SVM,
A= A0p71 X oo X A0p7k X AI if learner = glmnet 7
. s R [-12,12] 2%
» HP space of a DAG is more complex: _@lpa R o -
. . . if learner = SVM
Depending on branching / selection cost R (1212 o
. . amma R [-12,12] 2%
different nodes and HPs are active 7ﬂglemr —
— hierarchical search space SR ST v
max_depth I {1,...,20}

A graph that includes many preprocessing steps and learner types can
be flexible enough to work on a large number of data sets

Combining such graph with an efficient tuner is key in AutoML!
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HPO - MANY APPROACHES

» Evolutionary algorithms
» Bayesian / model-based optimization
» Multi-fidelity optimization, e.g. Hyperband

e
HPO methods can be characterized by:

» how the exploration vs. exploitation trade-off is handled
» how the inference vs. search trade-off is handled

Further aspects: Parallelizability, local vs. global behavior, handling of
noisy observations, multifidelity and search space complexity.
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OPTIMIZATION — BAYESIAN OPTIMIZATION

BO sequentially iterates:

1. Approximate \ — c(\) by

(nonlin) regression model &(\), T e Tunetion
from evaluated configurations neertainty S
(archive / history) :
2. Propose candidates via £ 4 T
optimizing an acquisition obmervation 6 '
function that is based on the e N
surrogate ¢(\)
3. Evaluate candidate(s) A

proposed in 2, then go to 1

Important trade-off: Exploration (evaluate candidates in under-explored
areas) vs. exploitation (search near promising areas)
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OPTIMIZATION — BAYESIAN OPTIMIZATION

Surrogate Model:

» Probabilistic modeling of
C(A) ~ (C(N), 6(N)) with
posterior mean ¢(\) and
uncertainty ().

» Typical choices for numeric
spaces are Gaussian
Processes; random forests
for mixed spaces; Bayesian
neural networks

- - True function

— Surrogate
Uncertainty

Acquisition
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OPTIMIZATION — BAYESIAN OPTIMIZATION
Surrogate Model:

» Probabilistic modeling of T
C(A) ~ (&(A), 6(A)) with B Uncortinty e
posterior mean &(\) and Acuisition
uncertainty ().

» Typical choices for numeric I cteertin
spaces are Gaussian s
X
Processes; random forests A ey

for mixed spaces; Bayesian
neural networks
Acquisition Function:

» Balance exploration (high &) vs. exploitation (low ¢).

» Lower confidence bound (LCB): a(A) = ¢(A) — k- 5(A)

» Expected improvement (El):  a(A) = E [max {cmin — C(\), 0}]
where (cmin is best cost value from archive)

» Optimizing a(A) is still difficult, but cheap(er)
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OPTIMIZATION - FURTHER BO VARIANTS

High-dimensional and complex spaces

» Often, learner or pipelines are highly configurable and contain
dependencies

P Fitting accurate and fast surrogates can be challenging and special
surrogates may be needed (e.g., GPs with special kernels, RFs as
model or BNNs with special embeddings)

Parallelization

» In standard formulation, only one point is proposed per iter and
evaluated; inefficient if parallel resources are available

» Many batch proposal variants exist (batch BO)
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OPTIMIZATION - SUCCESSIVE HALVING

» Races down set of HPCs to the best
Idea: Discard bad configurations early
» Train HPCs with fraction of full budget

v

(SGD epochs, training set size); the e
control parameter for this is called e
multi-fidelity HP N =5
» Continue with better half of HPCs S— N

(w.r.t GE); with doubled budget

» Repeat until budget depleted or single
HPC remains 12% 25% 50% 100%

Ndgec
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OPTIMIZATION - HYPERBAND

Problem with SH

» Good HPCs could be killed off too early,
depends on evaluation schedule

Solution: Hyperband

» Repeat SH with different start budgets )\Loddget
and initial number of HPCs pl%

» Each SH run is called bracket
» Each bracket consumes ca. the same budget

bracket 3
t /\Lll]idget p:[;]
0 1 8
1 2 4
2 4 2
3 8 1
bracket 2
t /\E'l]idget pM
0 2 6
1 4 3
2 8 1
bracket 1
t /\Lll]idget p[ll]
0 4 4
1 8 2
bracket 0
t /\El]idget p([)L]
0 8 4
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OPTIMIZATION - BOHB
Bayesian Optimization (BO) and Hyperband (HB)

» Strength of HB: Multifidelity / discard bad configs early

= Most visible early in optimization
» Strength of BO: Sample efficiency

= Most visible later, when initial samples result in better surrogate
» BOHB tries to combine these strengths

107!

—»— Random Search

20x speed up =~ Bayesian Optimization
Hyperband

-e- BOHB

1072

regret

55X speed up

-3 I
10 10! 102 10® 10* 10° 108
wall clock time [s]
Optimization of six HPs of a neural network; shown is the regret (over global best known
performance) of the best model found by each method at a given time.

From: Falkner et al. BOHB: Robust and Efficient Hyperparameter Optimization at Scale,
ICML 2018
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OPTIMIZATION - BOHB — ALGORITHM

General template

» Evaluates HPOs with SH as in HB

» Instead of random samples, configurations are chosen by BO

» The model is fitted to performance values of highest fidelity for
which enough data is available

Point proposal with KDE

» Uses multi-dim kernel density estimator
» Divide archive into 2 groups and fit KDE on each

I(A) = p(c < a|\) (‘good’ configurations)
g(A) = p(c > a|A) (bad’ configurations)

( is pre-defined percentile)
1)

» Can show: maximizing El is equivalent to maximizing ratio a0
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OPTIMIZATION - BOHB - VERDICT

» Strong performance both early and late during optimization
(“anytime performance”)

» Flexible: Can be parallelized by using parallel HB methods, and
noisier optimization of %

10°

107!

regret

1072

1073
10° 10* 102 10% 10*

10°
wall clock time [s]
Performance of parallel BOHB on surrogate benchmark.

From: Falkner et al. BOHB: Robust and Efficient Hyperparameter Optimization at Scale,
ICML 2018
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OPTIMIZATION - BOHB’S SUCCESSORS:
SMAC-HB

» The long-term performance heavily depends on the predictive
quality of the surrogate

P Several papers indicate, other models than KDE can perform better
» SMAC-HB combines HB and BO with RFs (and GPs) as a surrogate
» On HPOBench, SMAC-HB is one of the strongest HPO approaches

0.0 ‘.—‘J

0.0 —A—\_‘—{] ’_J-’=~;J—‘~ 0.0 _.\l//-\//.\\-/"— .‘Lf 0.0 \//\ /\/<
-0.5 [ -0.5 05 0.5 \/

-1.0 . -1.0

-1.0

-50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50

(a) w/ bootstrapping & middle splits (b) w/ bootstrapping & random splits
(c) w/o bootstrapping & middle splits (d) w/o bootstrapping & random
splits

Lindauer et al. SMACS3: A Versatile Bayesian Optimization Package for Hyperparameter
Optimization, 2021
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OPTIMIZATION - BOHB’S SUCCESSORS: DEHB

» BO'’s overhead is often fairly large
» Evolutionary algorithms (EA) have much smaller overhead
» One of the strongest EAs is differential evolution (DE)

‘ v
PARENT POOL

each wedge
denotes a
configuration

— population to sample parents from which mutants are
created using difference vector operations

From: Awad et al. DEHB: Evolutionary Hyberband for Scalable, Robust and Efficient
Hyperparameter Optimization, IJCAI 2021

size of sphere
denotes budget

top performing
configuration
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PRACTICAL ASPECTS OF HPO

» Choosing resampling

» No. of observations, i.i.d assumption for data
sampling process

» Choosing performance measure

» Desired implications when applying the model
in practice

» Choosing a pipeline and search space

» Numeric HPs of arbitrary size should be tuned
on log scale

» Size of search space results in different
trade-offs:
too small may miss out well performing HPCs;
too large makes optimization more difficult
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PRACTICAL ASPECTS OF HPO

» Choosing HPO algorithm
» For few HPS (1-2), grid search could be used for having a controlled
study (but is not recommended efficiency-wise)
» BO with GPs for up to 10 numeric HPs
BO with RFs handle mixed HP spaces
» Random search and Hyperband work well as long as the “effective”
dimension is low
» EAs are somewhat in-between BO and RS, can handle very complex
spaces, but less sample efficient than BO
P> Also: use something that’s stable and robust! More an aspect
of the implementation than the algo!

v

» When to terminate HPO
» Specify a certain amount of runtime/budget beforehand
» Set a lower bound regarding GE
» Terminate if performance improvement stagnates
» Terminate if acquisition function values reach a threshold (BO)
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PRACTICAL ASPECTS OF HPO

» Warm starts

» Evaluations (e.g., weight sharing of neural networks)
» Optimization (intializing with HPCs that worked well before)

» Control of execution

» Parallelizability of HPO algorithms differs strongly
» HPO execution can be parallelized at different levels (outer
resampling, iteration, evaluation, inner resampling, model fit)

More on practical aspects — Bischl, ..., Lindauer. Hyperparameter
Optimization: Foundations, Algorithms, Best Practices and Open
Challenges, under review, 2021
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WHAT DOES ACTUALLY WORK?

Problem:

» New HPO methods are proposed frequently

» Benchmarking new methods and SOTA algorithms is expensive:
Papers often only use toy problems, synthetic functions or a very
limited number of real world problems
— No clear indication of what really works in practice!

Solution:

» Easy to use and reproducible HPO benchmark suites with
practically relevant problems for comparison of HPO methods
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HPO BENCHMARK SUITES

HPOBench [Eggensperger et al. NeurlPS'21 Datasets and Benchmarks Track]

» Successor of HPOIib

» Collection of 12 benchmark families; in total > 100 HPO problems
» Mix of tabular, surrogate and real benchmark problems

» Also allows for benchmarking multifidelity HPO methods

» Benchmarks are containerized making them easily reproducible

YAHPO Gym [Pfisterer, Schneider et al. 2021]

» Collection of 9 benchmark families constituting over 700 multifidelity
multicriteria HPO problems

» Surrogate benchmarks using neural-network based instance
surrogates

» fast inference (< 50 ms) & low memory footprint (~ 5 MB)

Others: HPO-B [Arango et al. NeurlPS’21 Datasets and Benchmarks Track]
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SYSTEMATIC AUTOML BENCHMARK

Scores (AUC) on 1h binary classification problems

aaaaaaaaaa ' -

What is it?

» Open source framework for benchmarking
state-of-the-art AutoML systems using
OpenML datasets

Why?

P Fair and easy-to-use comparison
— open source — open science

Who is involved?

H,0
+OpenML AutoML
LMU
Some Conclusions:

» No AutoML system consistently outperforms
others

» Tuned random forest is very competitive

Gijsbers et al. An Open Source AutoML Benchmark, AutoML WS at ICML 2019
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AUTOML - CHALLENGES

P> Most efficient HPO approach? Good benchmarks often missing (but
things are slowly changing for the better)

3 B
s s s s

o . A 1. « RS Hyperband

£e [ T I R & e 01

s & W i i BOGr — DEHB
2 2 2 2 ——- BOgr SMAC-HB
| N N . -~ Dragonfly
1 10°¢ 1072 10° 10° 10°% 102 10° 1 107 100 10° 10~ BO, rayssha

Fraction of budget fraction of budget Fraction of budget == BOxoe hyper

Mean rank-over-time across 32 repetitions for black-box and muilti-fidelity optimizers.

Eggensperger et al. HPOBench, NeurlPS'21 Datasets and Benchmarks Track
» How to integrate human a-priori knowledge?

» How can we best (computationally) transfer “experience” into
AutoML? Warmstarts, learned search spaces, etc.

» Multi-objective goals, including model intepretability
» AutoML as a process is too much of a black-box, hurts adoption
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IMPORTANCE OF HYPERPARAMETERS

» For users very often unclear, what to tune and how to setup optimization.

» Addresses problem of HP importance, optimal defaults and empirical design of
search spaces

» Theoretical definitions for above quantities; computation from large ML databases
and aggregate of surrogates

Tunability of algorithms Tunability of hyperparameters of a random forest (ranger)

AUC tunabilty
AUC tunabilty

Tx;

Tunability of an algorithm Sk: Tunab|||ty of a parameter 6'):
i = Sk(Oder) — Sk(Vk) = Sk(0aer) — Sk(6)

Probst, Boulesteix, Bischl. Tunability: Importance of Hyperparameters of Machine Learning Algorithms, JMLR 2019
van Rijn, Hutter. Hyperparameter Importance Across Datasets, KDD 2018
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MANY STAKEHOLDERS - MULTIPLE OBJECTIVES

» Optimizing a model only for prediction is often unrealistic.

Important Objectives

¥ ¥ ¥

rformance Computational Reliability &

letri Transparency

Pred. Per- MAC's & Robustness | [ Interpretabilty |
formance FLOP's

Distribution "
Vods! sizs , [ Complexity
| ROC & Memory Shift
Inference &

L " t Perturbations | + Explainability
Calibration Training Time
| Adversarial

» Some tasks can’t be distilled into one single metric.
P Stakeholders in ML process like different properties of model.

Horn, Bischl et al. Multi-objective parameter configuration of machine learning algorithms using model-based optimization, 2016
IEEE symposium series on computational intelligence
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MULTI-OBJ. HYPERPARAMETER OPTIMIZATION

Pareto Set (Input space)

< |
S
T T T T T T
00 02 0.4 06 08 1.0
A1
Pareto Frontier (value space)
<« 4
o
ol A
(72( ) Pareto
% - Points
<
© 4

('1(>f)

Image source: Daniel Hernandez-Lobato

> c(A) = (ci(A), .., Cm(A))

> )\ dominates X\ if

>

Vie{1,....,m}:c(A) < c(A)
and 3i € {1,...,m} : ci(A) < ci(N)

» Set of non-dominated solutions:
A* = {Xx € A|AX € A : X dominates A}

Black Box

—
C1
Az >
——
.
RS
Ag
——
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POPULAR METHODS FOR MULTI-OBJ. AUTOML

®

Model-Based Optimization Evolutionary Algorithms

Multi-Objective Model- Multi-Objective Evolu-
Based Optimization tionary Computation
12 ¥
Surrogate for
each output

Surrogate based
on scalarization

Swarm Intelligence.

Aggregating Ac- ] Multiple Acqui- J Information- ] Optimization ‘ Pareto-Based ] Decomposition- ] Indicator- ]
quisition Function sition Functions Theoretic Archive Based Archive Based Archive
Ant-Colc
SMSEGO | MUlt-EGO | PESMO | o:nm;:nnayn I [ moEAD | SMS-EMOA |
1] } - ] } { - ] { = J { - ]
Tends to be more Works well with complex and
sample efficient. awkward search spaces.

Horn, Bischl et al. Model-based multi-objective optimization: taxonomy, multi-point proposal, toolbox and benchmark, International
Conference on Evolutionary Multi-Criterion Optimization 2015
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MULTI-OBJ. FEATURE SELECTION AND HPO

» Should we first select features or first optimize hyperparameters?
— Do both simultaneously!

Feature fraction

N\ /

Different features

Binder, Moosbauer, Bischl et al. Multi-objective hyperparameter tuning and feature selection using filter ensembles, GECCO 2020
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QUANTIFYING COMPLEXITY FOR IML

» Minimizing model complexity
maximizes interpretability A

» Measure model complexity based on
FANOVA in model-agnostic way:
number of features, interaction
strength, main effect complexity

» Enables multi-objective Feabure
model-selection for interpretability

FANOVA Decomposition:

1st order effects )
Intercept —_—— Higher order effects

p
=T o+ Hg + S felxs)
j=1

SC{1,....p},|8|=2

Molnar, et al. Quantifying Interpretability of Arbitrary ML Models Through Functional Decomposition, ECML 2019
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HUMAN-CENTERED AUTOML

» Fully automated ML design can
also receive pushback:
» How to verify results
(i.e., ML pipelines)?
» How to bring in human
expertise?
» How to integrate into
prototype-driven workflows?

~~ Human-centered AutoML
instead of fully automated ML?

Evaluate Select pipeline
performance
AutoML
Loop
Update: g
Search space, . Meta-Data:
Constraints, * Pipeline —» Perform:
Preferences, .
Priors,... ixAutoML
-
L
n
Interaction Explain
between users and AutoML
AutoML

Quantitative and
Qualitative

Explanations
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EXPLAINABLE HPO

Goal: Explain HPO via
Partial Dependence Plots
(PDPs)

» Problem: Optimization
traces are not iid
samples

» Low reliability / large
uncertainties in the
PDP estimation

» Can't (easily) change
sampling behavior
(optimization)

Sampling bias caused by No optimization-related
optimization sampling bias

Overall

" . . good fit

egion wi

ood fit and lo 3 9
Region with - ¥ 3 . - .
. w3

high uncertainty

High Sampling Bias ‘ | Medium Sampling Bias Low Sampling Bias

EWIWIN

-50

-6.0 -25 0.0 25 5.05.0 -25 0.0 25 5.05.0 -25 0.0 25 5.0
M

Black: true function;
Blue: PDP; Grey area: uncertainty
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EXPLAINABLE HPO

Entire Hyperparameter Space, n = 1000 Split 6: Optimal Sub-region, n = 39

. 0.10 . 0.10
Solution: PDP 008 0051 S
uncertainty measure C T s " C T s
+ recursively partition e dopou <= 6720,
search space to get Weight decay < 60172

Entire Hyperparameter Space, n = 1000 Split 6: Optimal Sub-region, n = 95

low-variance

i . 015 015
eXp|anat|ons In ©0.10 ©0.10 /
0,05 = 005{ o,

interesting areas

4 5 6 7 8 9 4 5 6 7 8 9
Batch Size Batch Size

Sub-region Definition.
num_layers <= 4.5,
weight_decay <= 0.0178,
max_dropout <= 0.6966

» Loss (variance across projected dimension):
. 2
LA N) = i (8 (2620 = 40 (As))
» Splitting criterion:
G
Riz(N') = Yoy LAZ N
Moosbauer et al. Explaining HPO via Partial Dependence Plots, NeurlPS’21
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INTEGRATING HUMAN A-PRIORI KNOWLEDGE

» ML practitioners often have an
intuition for promising
hyperparameter configurations

~+ Sampling of configurations
should focus in these regions

» However, practitioners can also
be wrong with their intuition

~> Over time, we should trust the
evaluated configurations and
the surrogate more than the
human expert
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HUMAN A-PRIORI KNOWLEDGE - BOPRO
f(x)

T

» Instead of modelling f(x) (a.k.a. c(\)), we model whether a
configuration is "good" or "bad" (see KDE)
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HUMAN A-PRIORI KNOWLEDGE - BOPRO
f(x)

et o

X

» Instead of modelling f(x) (a.k.a. c(\)), we model whether a
configuration is "good" or "bad" (see KDE)

Souza et al. Bayesian Optimization with a Prior for the Optimum, ECML 2021
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HUMAN A-PRIORI KNOWLEDGE - BOPRO
f(z)

N(MZ‘ O’%)

7 7 Pz Sy

T

» Instead of modelling f(x) (a.k.a. c(\)), we model whether a
configuration is "good" or "bad" (see KDE)

» Using the Gaussian distribution of a GP, we can determine the
probability of being good &4

Souza et al. Bayesian Optimization with a Prior for the Optimum, ECML 2021
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HUMAN A-PRIORI KNOWLEDGE - BOPRO
f(x)

N(ﬂzv Ug)

7 7 Ty

T

P Instead of modelling f(x) (a.k.a. ¢(\)), we model whether a
configuration is "good" or "bad" (see KDE)

» Using the Gaussian distribution of a GP, we can determine the
probability of being good &4

» Combine with human prior on being a promising configuration Py

9N x Py(A)Eg(A)P

Souza et al. Bayesian Optimization with a Prior for the Optimum, ECML 2021
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HUMAN A-PRIORI KNOWLEDGE - BOPRO
f(x)

N(MI‘ U%)

l/ V Pg\_f’)/

T

» Instead of modelling f(x) (a.k.a. c(A)), we model whether a
configuration is "good" or "bad" (see KDE)
» Using the Gaussian distribution of a GP, we can determine the
probability of being good &4
» Combine with human prior on being a promising configuration Py
t
9(A) x Pg(A)Cg(A)#
» Over time t, the influence of the human prior gets weaker

Souza et al. Bayesian Optimization with a Prior for the Optimum, ECML 2021
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HUMAN A-PRIORI KNOWLEDGE - 7BO

» BOPro has several assumptions on how to model the observations

» 7wBO is simpler: augment the the acquisition function of BO by a
human prior preference

Advantages of mBO:

» Can be combined with any acquisition function

» Same convergence guarantees as with the original acquisition
functions (e.g., El)

» Can again recover from misleading a-priori knowledge

Hvarfner et al. #BO: Augmenting Acquisition Functions with User Beliefs for Bayesian
Optimization, under review, 2021
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HUMAN A-PRIORI KNOWLEDGE - 7BO

& 1BO —~ Spearmint -@- Prior Sampling -9~ Bows W~ BOPro
90.5% U-Net Medical 04.2% ImageNette-128
5% 2%
2.5x Speedup
©90.2% > 94.0% | 12.5x Speedup
o o
3 90.0% g
ot 2 93.8%
O 89.8% 2
a o 93.6%
= 89.5% 5]
8

= T 93.4% |
K 89.2% g TR
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Hvarfner et al. #BO: Augmenting Acquisition Functions with User Beliefs for Bayesian
Optimization, under review, 2021
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CONCLUSIONS

» Sample efficiency is key!

» Can be achieved by different sampling or evaluation strategies
» Multi-objective HPO (/AutoML) is important in practice

» Never forget the human in the loop!
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» Sample efficiency is key!

» Can be achieved by different sampling or evaluation strategies
» Multi-objective HPO (/AutoML) is important in practice

» Never forget the human in the loop!

Have Fun at the AutoML Fall School!

41 /41



