

AutoML: Replacing Data Scientists?

Marius Lindauer

Introducing myself

> 2005

2005-2014

2014-2019

Seit 2019

Berlin

School

Potsdam

B.Sc. + M.Sc. +

Ph.D in

Computer

Science

Freiburg

PostDoc in

Frank Hutter's

group

Hannover

Professor of

Machine

Learning

& AutoML

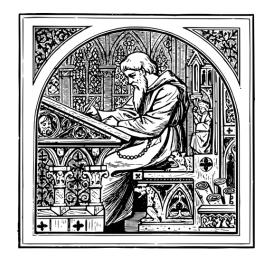
Photo by Stefan Widua on Unsplash Photo by Chris Reyem on Unsplash

Photo by Kanan Khasmammadov on Unsplash

Photo by op23 on Unsplash

The need of AutoML!?

Rise of Literacy



- Only priests were able to read and write
- People believed that they don't need to read and write
- They went to the holy buildings

Photo by Anna Hunko on Unsplash

- Today, everyone can read and write
- No one doubts the benefits of it
- ⇒ Democratization of literacy

Inspired by Andrew Ng

Al Literacy?

Photo by Max Duzij on Unsplash



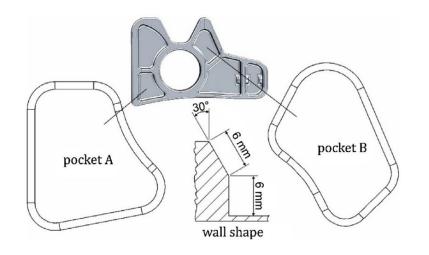
Power only with the large IT companies

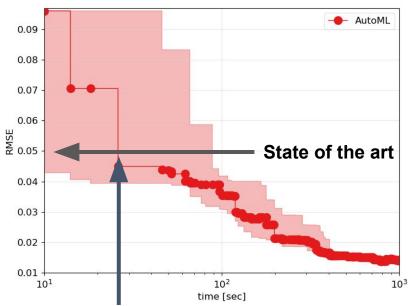
- In an age of limited resources, the need for efficient use gets more important
- AutoML contributes to Al literacy!

[See also my TEDx Talk]

A case study with engineers [Denkena et al. 2020]

Shape Error Prediction in Milling Processes

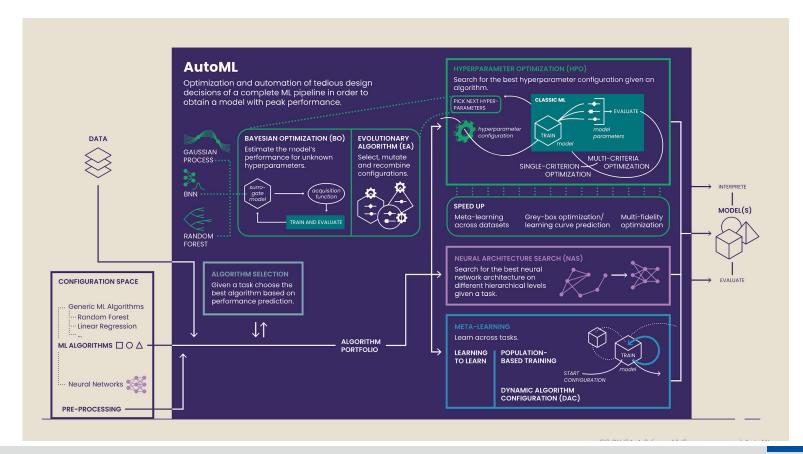




Better than state of the art after 27 sec!

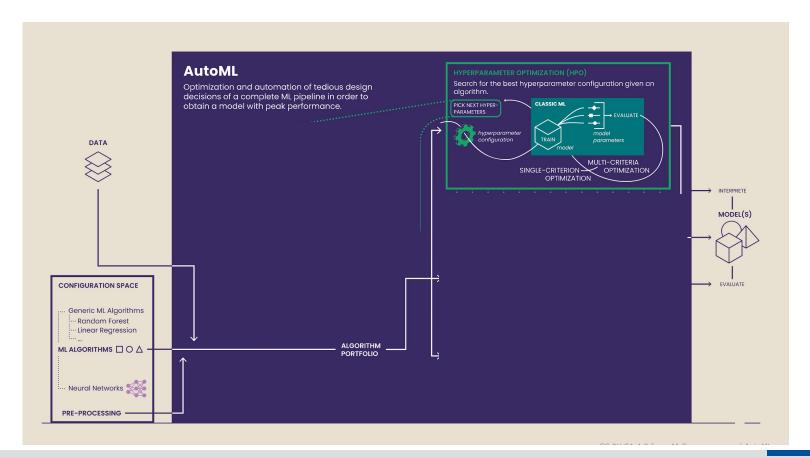
AutoML Landscape

AutoML A-Z

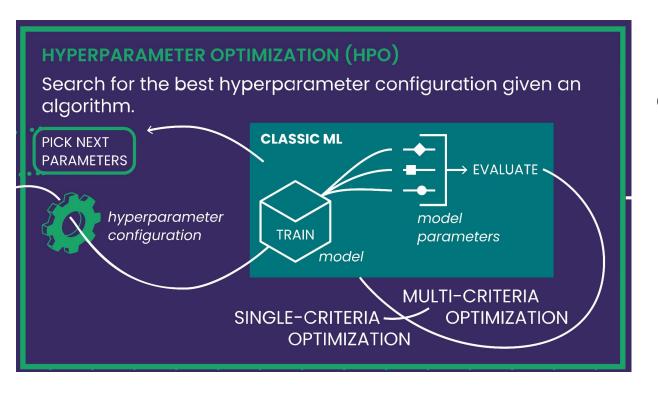


AutoML A-Z

Hyperparameter Optimization



Hyperparameter Optimization

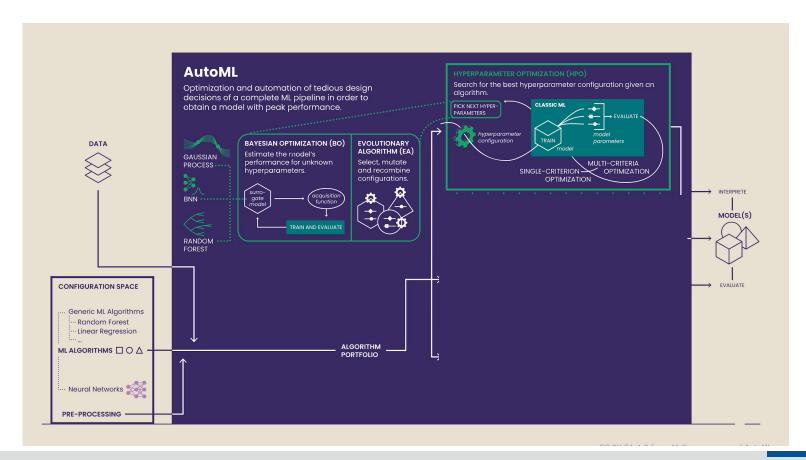


Optimize for

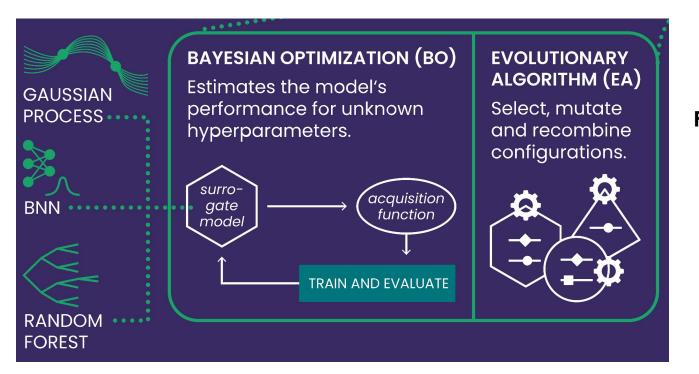
- Accuracy (& co)
- Memory consumption
- Energy consumption
- Inference time
- Training time
- Fairness
- Robustness
- Uncertainty quantification

• ..

Optimizers for HPO



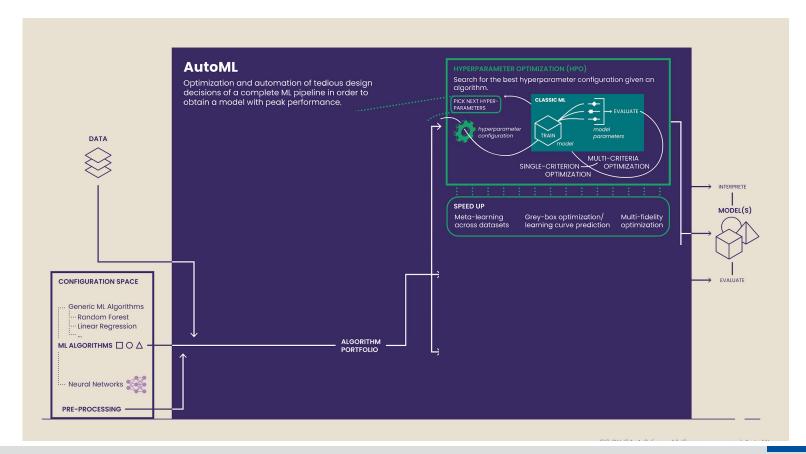
Optimizers for HPO



Further alternatives:

- Grid search
- Random search
- Reinforcement Learning
- Planning

Speeding Up



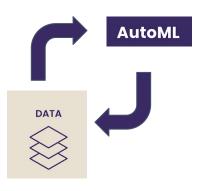
Speeding Up

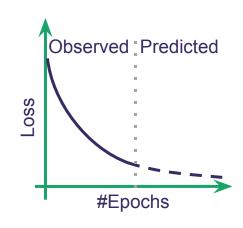
SPEED UP

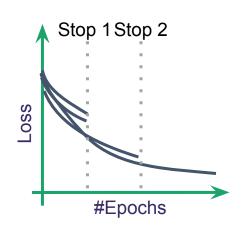
Meta-learning across datasets

Grey-box optimisation/learning curve prediction

Multi-fidelity optimisation





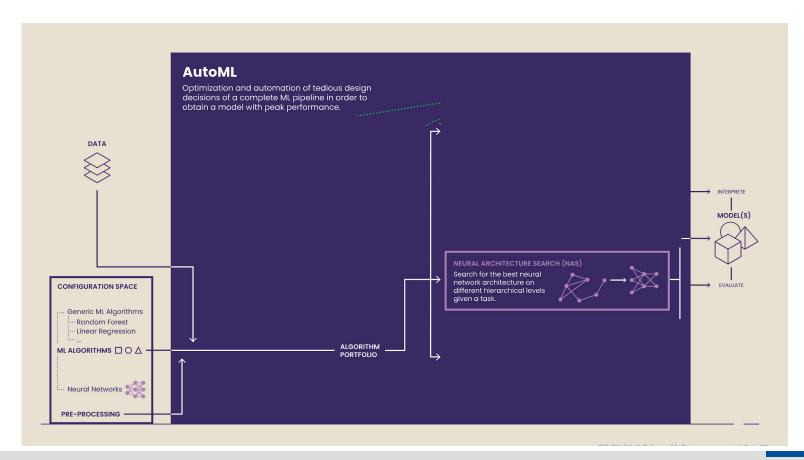


HPO Packages

Package	Complex Hyperparameter Spaces	Multi- Objective	Multi- Fidelity	Instances	CLI	Parallelism
HyperMapper	$\overline{}$	<u>~</u>	×	×	×	×
Optuna	$\overline{}$	<u>~</u>	\checkmark	×	<u>~</u>	✓
Hyperopt	\checkmark	×	×	×	<u>~</u>	✓
BoTorch	×	<u>~</u>	\checkmark	×	×	✓
OpenBox	$\overline{\mathbf{v}}$	✓	×	×	×	✓
HpBandSter	$\overline{\mathbf{v}}$	×	\checkmark	×	×	✓
SMAC	\checkmark	<u>~</u>	$ lap{}$	$\overline{\mathbf{v}}$	~	

last update of table in 2021

Neural Architecture Search (NAS)

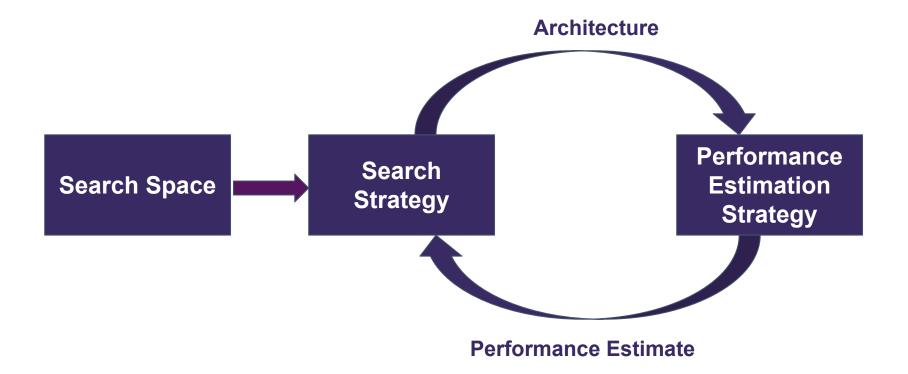


Neural Architecture Search (NAS)

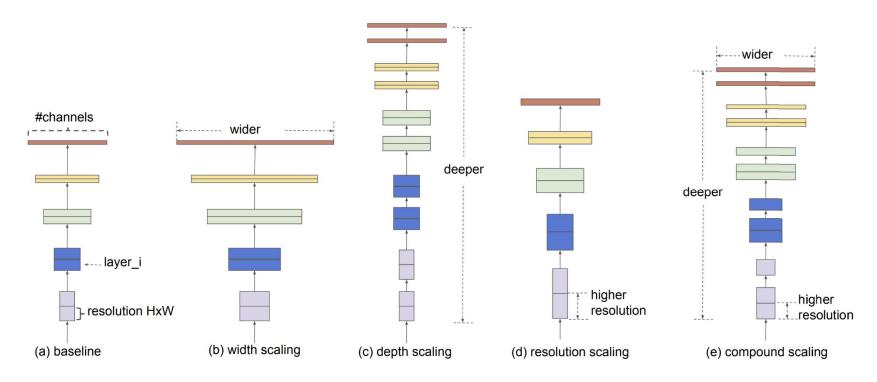
NEURAL ARCHITECTURE SEARCH (NAS)

Search for the best neural network architecture on different hierarchical levels given a task.

The Components of NAS



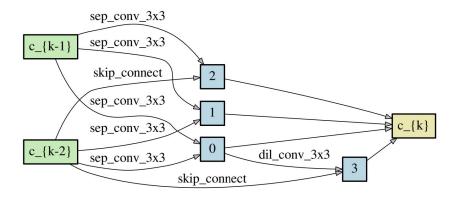
Search Space 1: Macro NAS

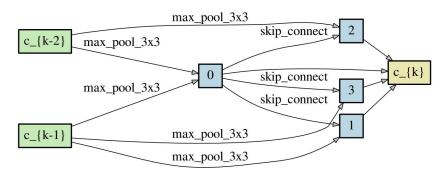


→ direct relationship to HPO: NAS as HPO

Source: [Tan & Le. 2019]

Search Space 2: Cell-based NAS





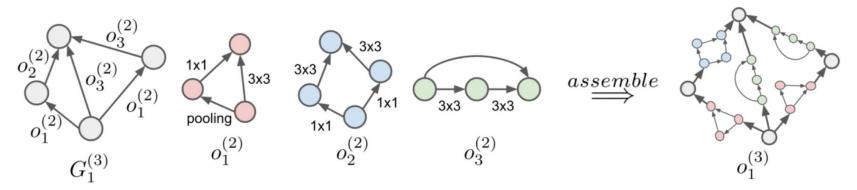
Source: [Liu et al. 2019]

Search Space 3: Hierarchical NAS

Search on multiple levels of the hierarchy

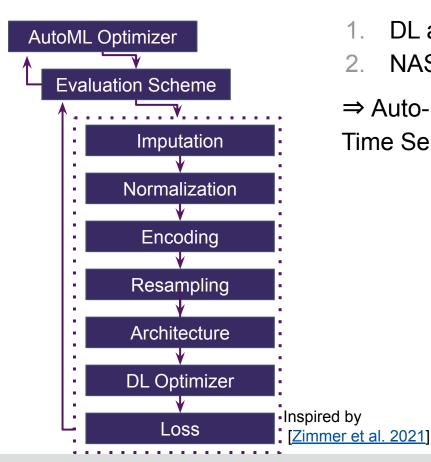
- Lower levels: create reusable building blocks
- Higher levels: combine building blocks

Like transformers are composed of lower-level building blocks (e.g., attention)



Source: [Liu et al, 2018]

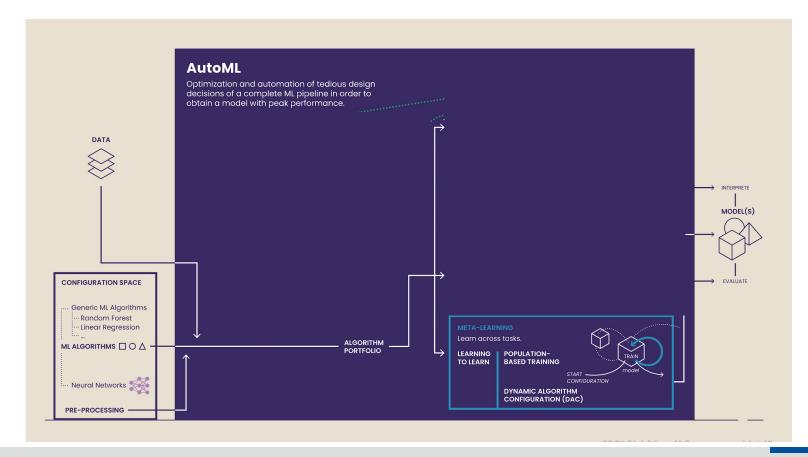
AutoDL: Joint NAS & HPO



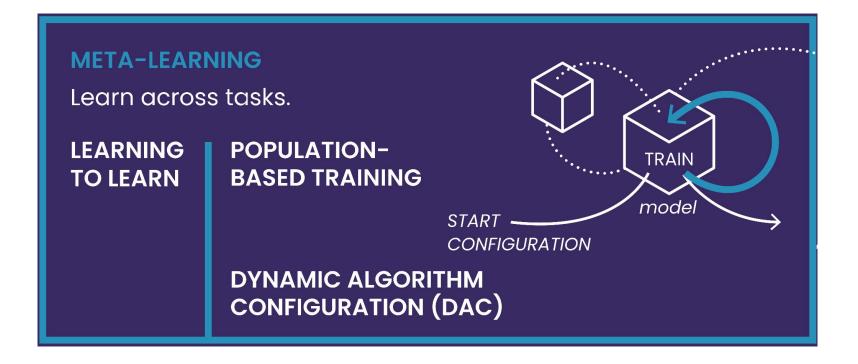
- 1. DL also includes complex pipelines
- NAS & HPO need to go hand in hand
- ⇒ Auto-PyTorch [Zimmer et al. 2021] and Auto-PyTorch for Time Series Forecasting [Deng et al. 2022]

```
# initialise Auto-PyTorch api
api = TabularClassificationTask()
# Search for an ensemble of machine learning algorithms
api.search(
   X train=X train,
   y train=y train,
   X test=X test,
   y_test=y_test,
    optimize metric='accuracy',
    total walltime limit=300,
    func_eval_time_limit_secs=50
# Calculate test accuracy
y pred = api.predict(X test)
```

Meta-Learning



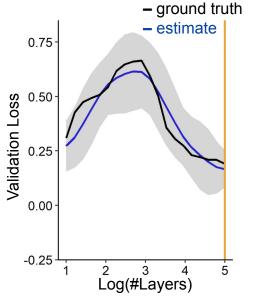
Meta-Learning



Learning about Learning Algorithms

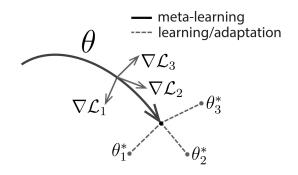
Performance prediction

Hyperparameter Effects & Importance



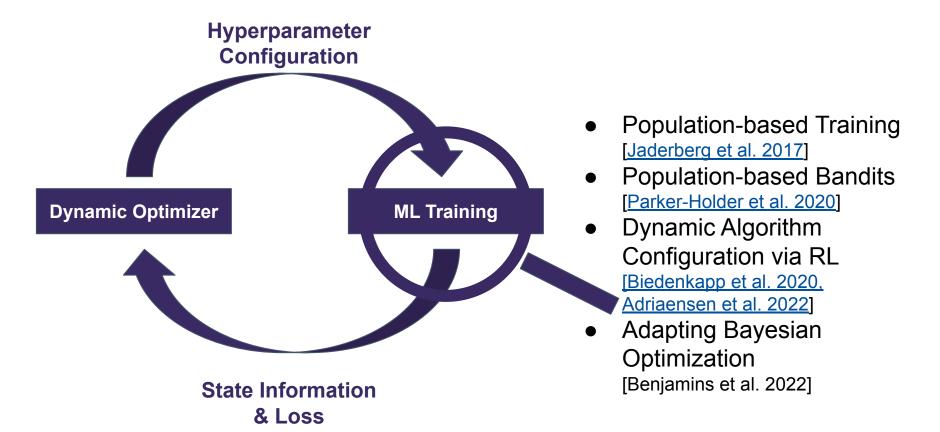
Source: [Moosbauer et al. 2021]

Learning NN weight initializations

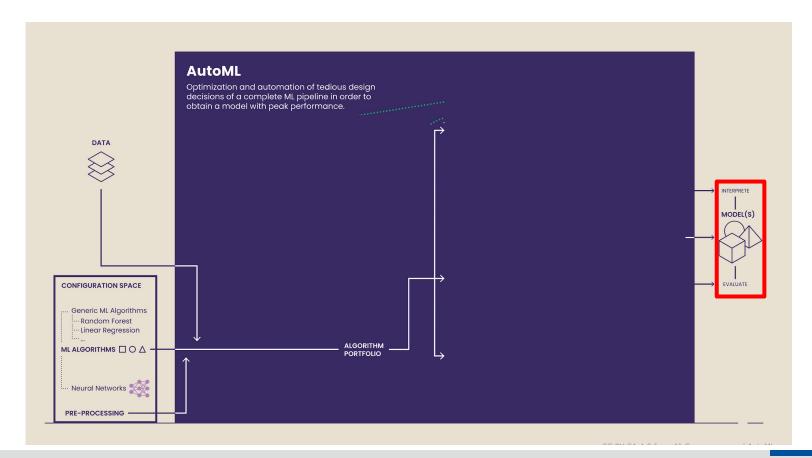


Source: [Finn et al, 2017]

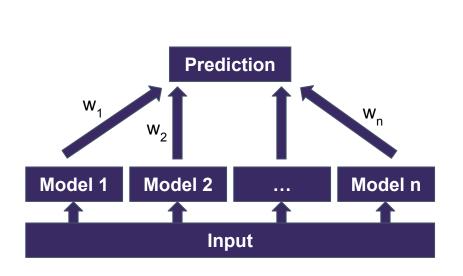
Dynamic AutoML

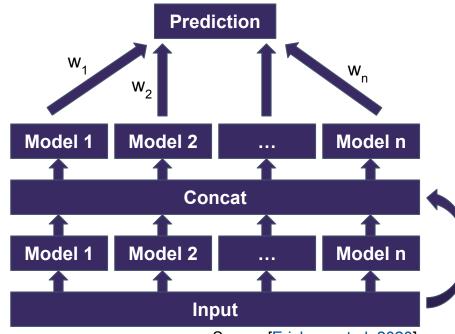


Final Step of AutoML



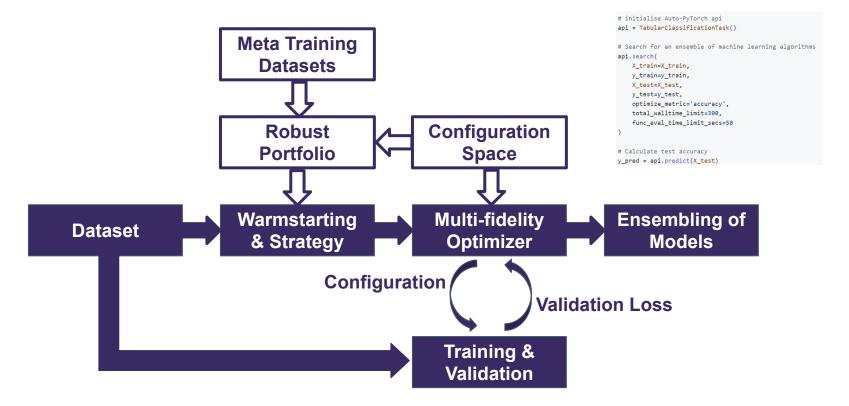
Ensembling vs Stacking



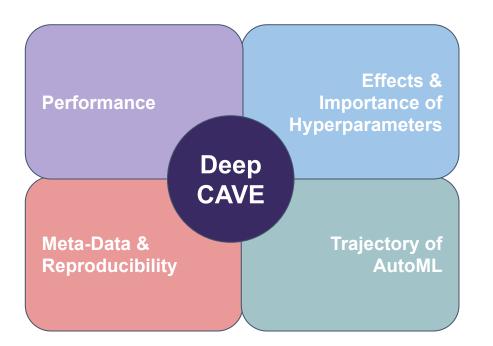


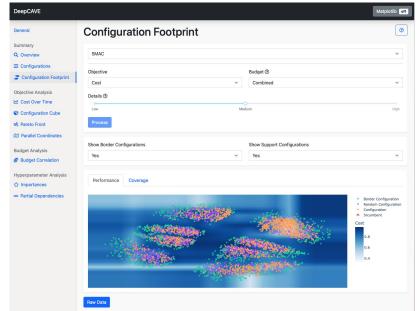
Source [Erickson et al. 2020]

Auto-Sklearn [Feurer et al. 2015, Feurer et al. 2022] & Auto-PyTorch [Zimmer et al. 2021]



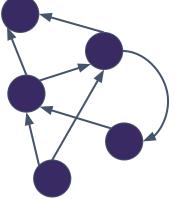
Monitoring AutoML [Sass et al. 2022]



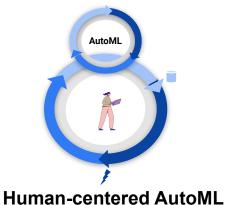


Selection of Open Challenges

Scaling up AutoML for very large models



Finding substantially novel architectures



Green AutoML

Are Data Scientists still needed? Yes

Determine your objectives, metrics and constraints

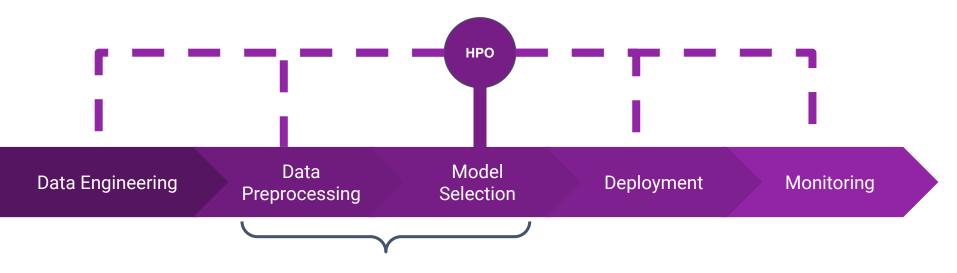
Design the configuration space

Bring in the domain knowledge

Determine Budgets

Monitor AutoML

HPO → **AutoML** → **AutoDS**

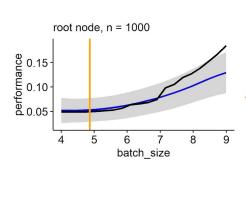


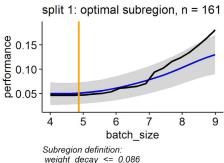
Focus of AutoML

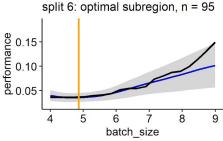
Can we explain what AutoML figured out? [Moosbauer et al. NeurlPS'21, Moosbauer et al. 2022]

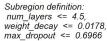
Explaining Hyperparameter Effects via PDPs

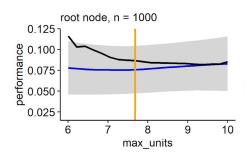
Ground truth PDP incumbent

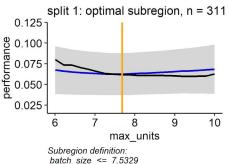


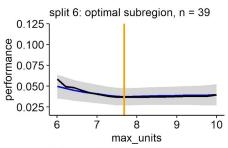












Subregion definition:
max_dropout <= 0.7305,
num_layers <= 4.5,
batch_size <= 6.1739,
weight_decay <= 0.0172

Partial Dependence Plots

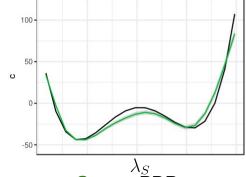
For, a subset *S* of the hyperparameters, the partial dependence function is:

$$c_S(\lambda_S) := \mathbb{E}_{\lambda_C} [c(\lambda)] = \int_{\Lambda_C} c(\lambda_S, \lambda_C) d\mathbb{P}(\lambda_C)$$

and can be approximated by Monte-Carlo integration on a surrogate model:

$$\hat{c}_S(\lambda_S) = \frac{1}{n} \sum_{i=1}^n \hat{m}\left(\lambda_S, \lambda_C^{(i)}\right)$$

where
$$\left(\lambda_C^{(i)}\right)_{i=1}$$
 $\sim \mathbb{P}(\lambda_C)$ and λ_S for a set of grid points.



Green: PDP

Black: Ground truth

→ Average of ICE curves.

[<u>Hutter et al. 2014</u>] showed how to do this efficiently for RFs as surrogate models.

Partial Dependence Plots with Uncertainties

$$\hat{s}_{S}^{2}(\lambda_{S})$$

$$= \mathbb{V}_{\hat{c}} \left[\hat{c}_{S} \left(\lambda_{S} \right) \right]$$

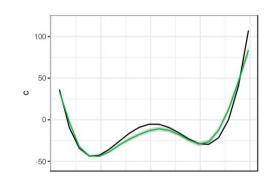
$$= \mathbb{V}_{\hat{c}} \left[\frac{1}{n} \sum_{i=1}^{n} \hat{c} \left(\lambda_{S}, \lambda_{C}^{(i)} \right) \right]$$

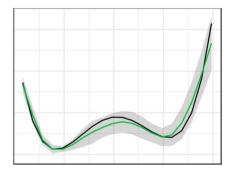
$$= \frac{1}{n^{2}} \mathbf{1}^{T} \hat{K} \left(\lambda_{S} \right) \mathbf{1}.$$

→ requires a kernel correctly specifying the covariance structure (e.g., GPs).

Approximation:

$$\hat{s}_S^2(\lambda_S) \approx \frac{1}{n} \sum_{i=1}^n \hat{K}(\lambda_S)_{i,i}$$



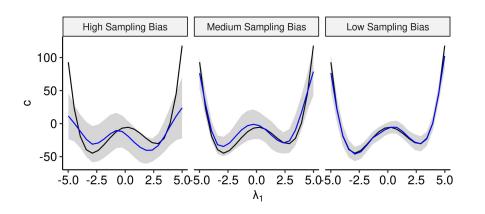


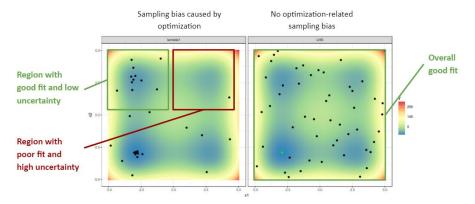
Ground truth PDP Uncertainty

→ Model-agnostic (local) approximation

Impact of Sampling Bias in Explaining AutoML

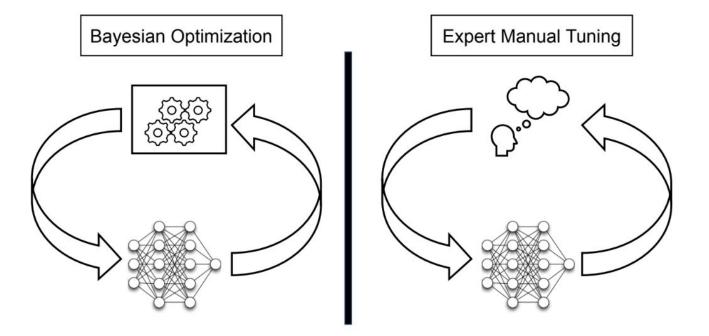
- Simply using all observations from AutoML tools might lead to misleading PDPs
- Uncertainty estimates help to quantify the poor fits
- → of course, sampling bias is wanted and the solution cannot be to change the sampling behavior



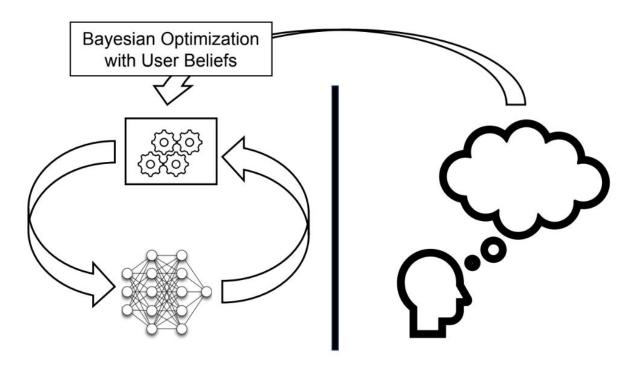


Can AutoML consider expert knowledge? [Hvarfner et al. ICLR'22]

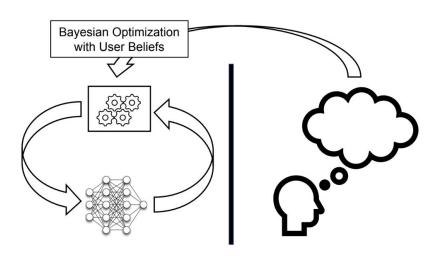
Bayesian Optimization vs Manual Tuning

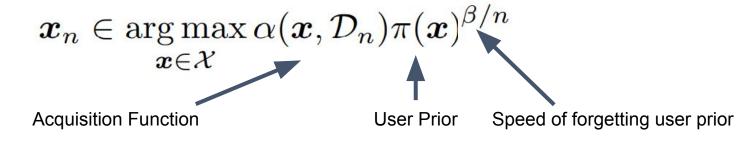


Bayesian Optimization with Expert Knowledge

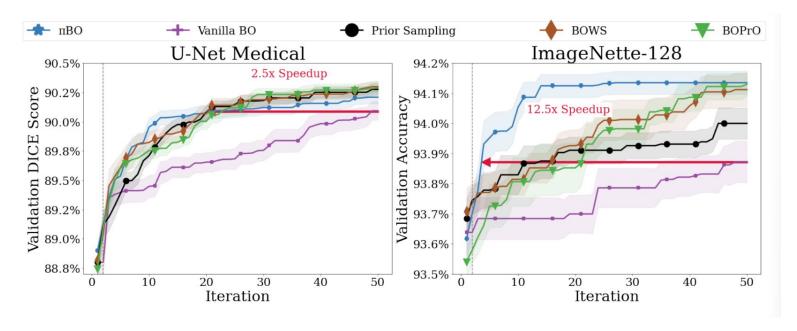


piBO





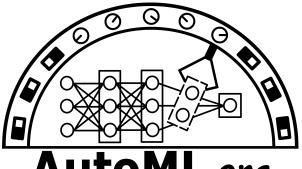
PiBO [Hvarfner et al. ICLR'22]



- Uses expert knowledge to speed up Bayesian Optimization
- → Robust also against wrong believes
- Substantially speeds up AutoML

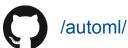
Will AutoML replace Data Scientists?





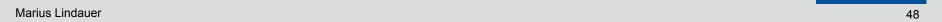
AutoML.org

/AutoML_org/



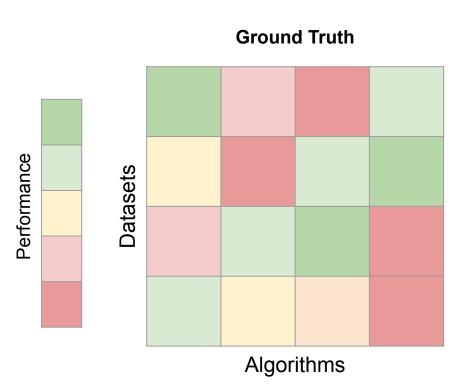
Funded by:

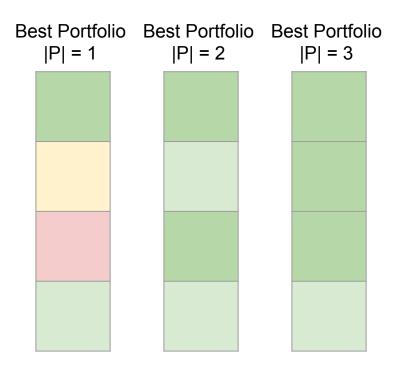
Federal Ministry for Economic Affairs and Energy



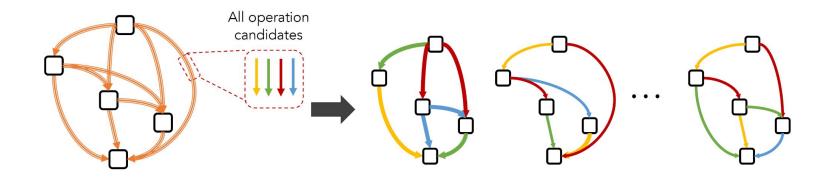
Backup slides

Portfolios for Warmstarting [Feurer et al. 2022]





Oneshot NAS: Weight Sharing Across Architectures



- For each choice between operations, the supernet includes all of them
- A linear number of weights shared by an exponential number of architectures
- Thus, updating the weights of one architecture simultaneously updates parts of the weights of exponentially many other architectures

Zero-Cost Proxies for NAS

Very hot topic in NAS, but no consistent improvements over trivial baselines, such as #parameters or FLOPs

Zero-Cost Proxies for NAS

ZC proxies are a particular type of performance predictor

- They aim to judge the performance of an architecture in a few seconds
- Often by a single forward pass on a mini-batch
- Thus, the term "zero-cost"

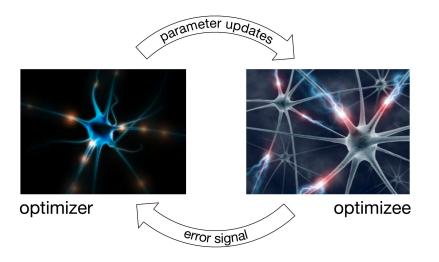
Examples

- Change of error when dropping network weights
- Dissimilarity of activation patterns for points in a batch

Very hot topic in NAS, but no consistent improvements over using number of parameters or FLOPS

Learning to learn

E.g., "Learning to learn by gradient descent by gradient descent" [Chen et al. 2016]



Source: [Chen et al. 2016]

E.g., Alpha-Zero [Silver et al. 2017]

Maturity of AutoML

