AutoML Systems and Lookout

Marius Lindauer

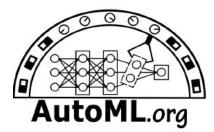
Leibniz Universität Hannover Germany

/ LindauerMarius m.lindauer@ai.uni-hannover.de

Katharina Eggensperger

Eberhard Karls Universität Tübingen Germany

/ KEggensperger katharina.eggensperger@uni-tuebingen.de



Questions?

Story Line Today

- AutoML Systems
 - Machine Learning Pipelines
 - Auto-Sklearn
 - Demo
- AutoML in the Wild
 - AutoML X Ethics
 - GreenAutoML
- What's missing?
 - AutoML that matters
 - Data that matters

Note: This lecture is based on the free online lecture "Automated Machine Learning" at https://learn.ki-campus.org/courses/automl-luh2021

- Basics of HPO
- Bayesian Optimization for HPO
- Speedup Techniques for Hyperparameter Optimiziation
- Multi-criteria Optimization

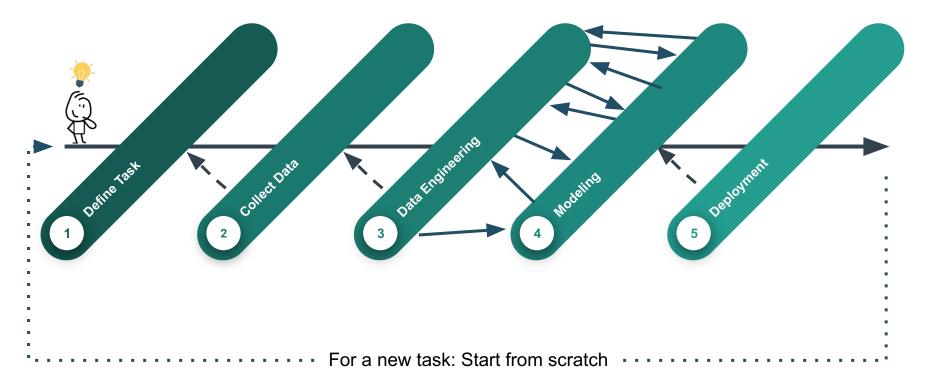
AutoML Systems

>> I need a tool for this!

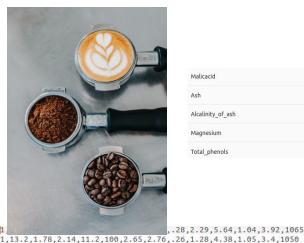
Machine Learning Pipelines

 Y_{test}

Why does ML development take a lot of time?



AutoML for Tabular Data. Why?



1,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185

1,14.2,1.76,2.45,15.2,112,3.27,3.39,.34,1.97,6.75,1.05,2.85,1450

1,14.37,1.95,2.5,16.8,113,3.85,3.49,.24,2.18,7.8,.86,3.45,1480 1,13.24,2.59,2.87,21,118,2.8,2.69,.39,1.82,4.32,1.04,2.93,735

1,14.39,1.87,2.45,14.6,96,2.5,2.52,.3,1.98,5.25,1.02,3.58,1290 1,14.06,2.15,2.61,17.6,121,2.6,2.51,.31,1.25,5.05,1.06,3.58,1295

1,14.83,1.64,2.17,14,97,2.8,2.98,.29,1.98,5.2,1.08,2.85,1045 1,13.86,1.35,2.27,16,98,2.98,3.15,.22,1.85,7.22,1.01,3.55,1045

1,14.1,2.16,2.3,18,105,2.95,3.32,.22,2.38,5.75,1.25,3.17,1510 1,14.12,1.48,2.32,16.8,95,2.2,2.43,.26,1.57,5,1.17,2.82,1280

1,14.75,1.73,2.39,11.4,91,3.1,3.69,.43,2.81,5.4,1.25,2.73,1150

1,13.63,1.81,2.7,17.2,112,2.85,2.91,.3,1.46,7.3,1.28,2.88,1310 1,14.3,1.92,2.72,20,120,2.8,3.14,.33,1.97,6.2,1.07,2.65,1280

,14.19,1.59,2.48,16.5,108,3.3,3.93,.32,1.86,8.7,1.23,2.82,1680 116 2 7 2 02 17 1 66 5 1

1,13.83,1.57,2.62,20,115,2.95,3.4,.4,1.72,6.6,1.13,2.57,1130

1,13.75,1.73,2.41,16,89,2.6,2.76,.29,1.81,5.6,1.15,2.9,1320

1,14.38,1.87,2.38,12,102,3.3,3.64,.29,2.96,7.5,1.2,3,1547

	Malicacid	Feature
	Ash	Feature
	Alcalinity_of_ash	Feature
	Magnesium	Feature
	Total phenols	Feature

Why is this challenging?

- mixed/categorical features
 - features on different scales
 - missing features
 - highly structured data
 - feature engineering needed

Why is this relevant?

 \rightarrow healthcare, biology, social sciences, finance, geoscience, physics, chemistry, mechanics, ...

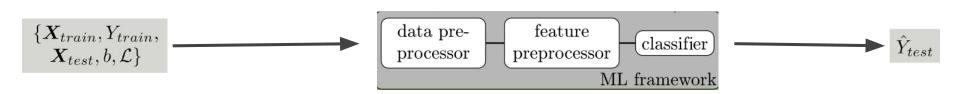
What is awesome about tabular data?

 \rightarrow There exist hundreds of datasets from different domains with different characteristics

Great for

- meta-learning
- studying algorithms
- comparing algorithms

AutoML Systems (and what they do)



AutoML Systems (and what they do)

preprocessor	$\#\lambda$			
$\{X_{train}, Y_{train}, X_{test}, b, \mathcal{L}\}$ extremt. rand. trees fast ICA feature agglomeratikernel PCA rand. kitchen sinks linear SVM prepr. no preprocessing nystroem sampler PCA polynomial random trees embe select percentile select rates one-hot encoding imputation balancing rescaling	s prepr. 5 4 tion 4 5 5 3 - 5 2 3	classifier AdaBoost (AB) Bernoulli naïve Bayes decision tree (DT) extreml. rand. trees Gaussian naïve Bayes gradient boosting (GB) kNN LDA linear SVM kernel SVM multinomial naïve Bay passive aggressive QDA random forest (RF) Linear Class. (SGD)	3	\hat{Y}_{test}

AutoML Systems (and what they want)

Machine Learning for everyone in 4 lines of code

import autosklearn.classification

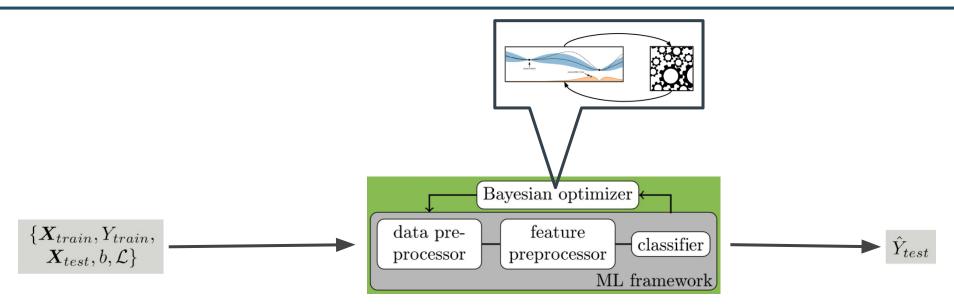
>>> cls = autosklearn.classification.AutoSklearnClassifier()

>>> cls.fit(X_train, y_train)

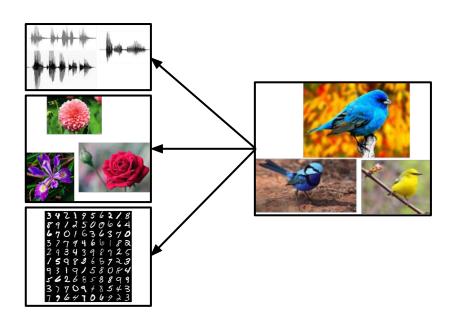
>>> predictions = cls.predict(X_test)

ESSAI SummerSchol 2023

AutoML Systems (and what they do)



\rightarrow Warmstart Bayesian Optimization



Offline / Before:

- 1) Collect >200 datasets
- 2) Find the best pipeline on each dataset

Online / For a new dataset:

- Compute 38 meta-features, select 25 most similar previous datasets
- 2) Initialize optimization with best pipelines on those datasets

More II: Ensembling

\rightarrow Build an ensemble

Image credit: Photo by Denisse Leon

AutoML Systems (and what they do)

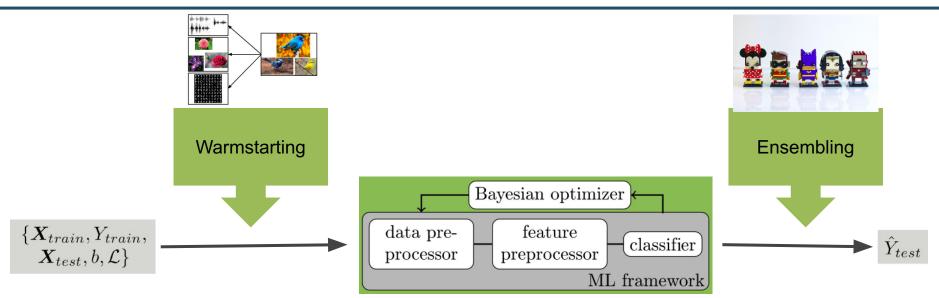
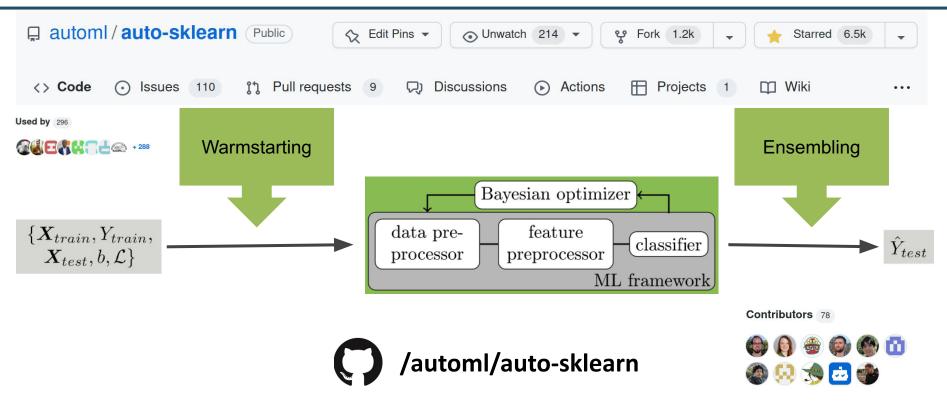
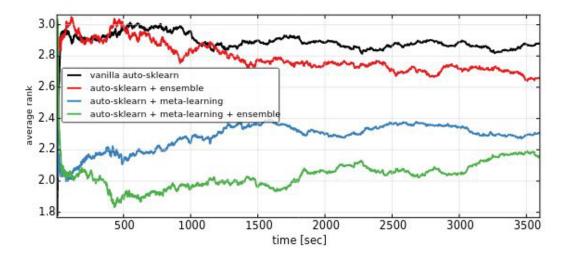


Image credit: Photo by Denisse Leon

Auto-Sklearn 1.0



Auto-Sklearn 1.0 - Results

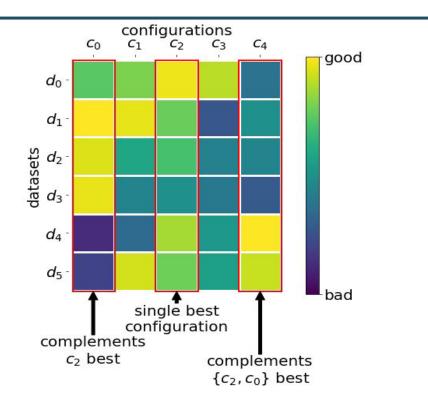


However, some things to be improved

- meta-features can be expensive to compute
- large datasets can be an issue

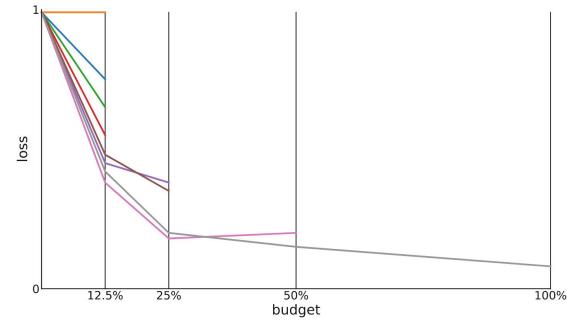
Even More I: Portfolios

- Goal Meta-Learning without meta-features
- Idea Construct a Portfolio (a list of diverse pipelines)



Even More II: Successive Halving

Goal Scale to large datasets. **Idea** Allocate more resources to promising pipelines

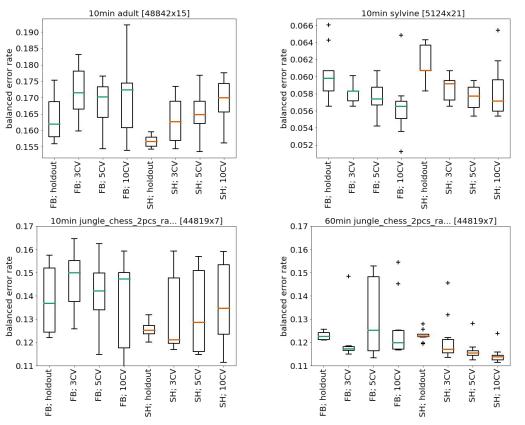


But what about small datasets?

Image Credit - CC-BY Matthias Feurer and Frank Hutter: *Hyperparameter optimization* Automated Machine Learning, The Springer Series on Challenges in Machine Learning

AutoML: Accelerating Research on and Development of Al Applications

Impact of the Optimization Strategy



Wait what? ... Did we make it worse?

Can we automatically select an optimization policy?

 \rightarrow Yes!

 \rightarrow We can learn a selector [Feurer et al 2022]

Photo by John Lockwood on Unsplash

Learned Selector

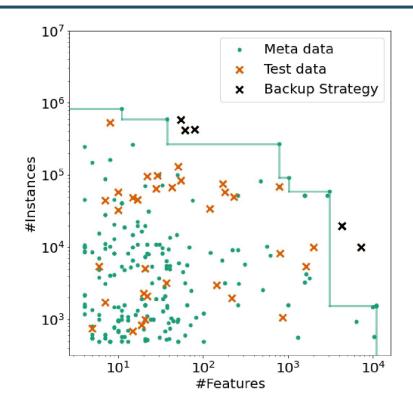
How?

Given a set of meta-datasets,

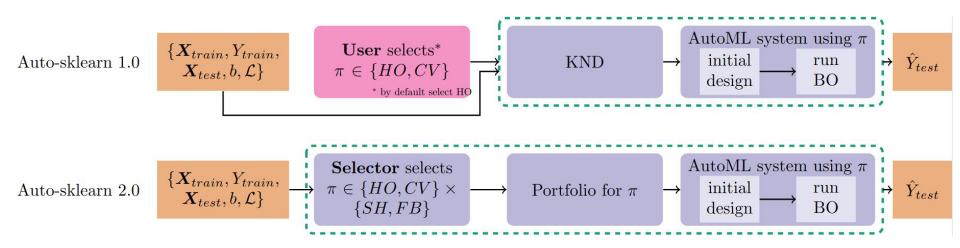
- for each dataset find best policy
- train a meta-selection model

Limitations

- meta-model is trained on a fixed budget
- meta-datasets need to be representative of the new dataset



Autosklearn 1.0 vs Auto-sklearn 2.0



Demo: <u>SMAC</u> / <u>Auto-Sklearn</u>

>> Here's my data. How do I use this?

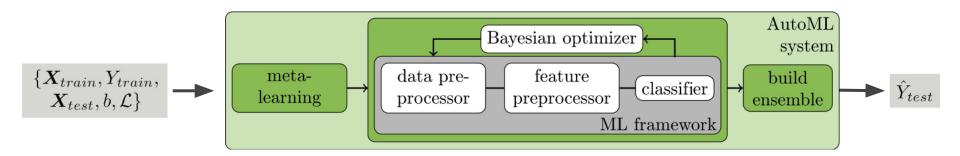
Other OSS Systems?

AutoGluon

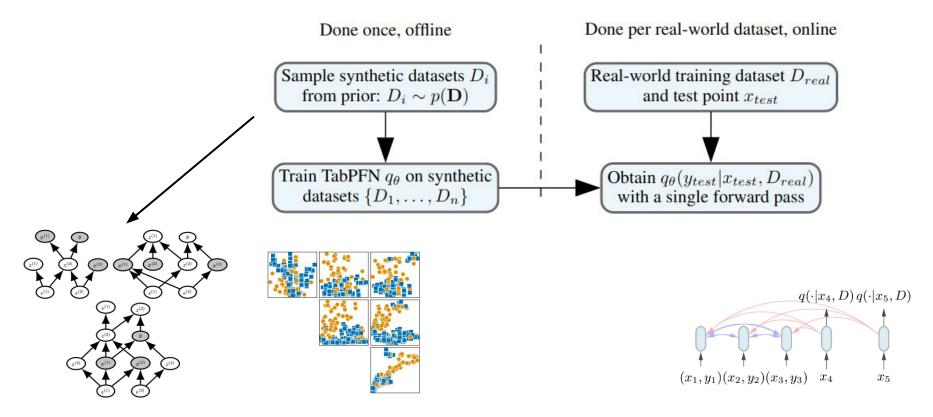
... and many more, see: https://openml.github.io/automlbenchmark/frameworks.html [Gijsbers et. al, 2022]

ESSAI SummerSchol 2023

TabPFN: Prior-fitted Networks for Tabular Data



TabPFN: Prior-fitted Networks for Tabular Data



TabPFN: Results

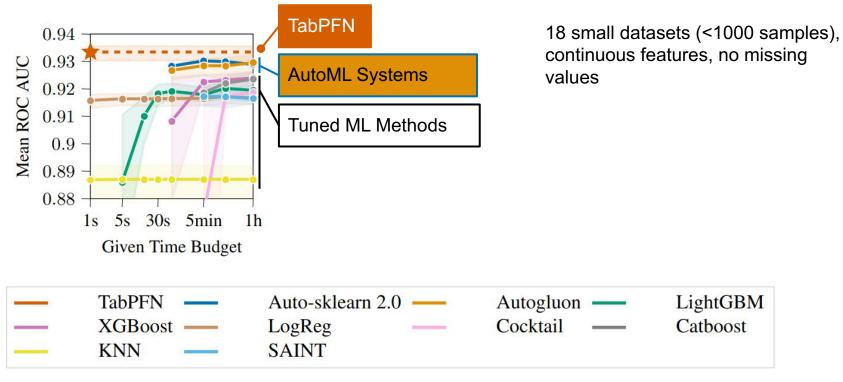


Image source: [Hollmann et al. 2023]

TabPFN: Summary

TL;DR TabPFN, a trained transformer, instantly yields predictions for tabular datasets.

Limitations and Remarks

- Up to 1000 samples
- Up to 100 features
- Up to 10 classes

→ works best on **continuous** datasets **without missing** values

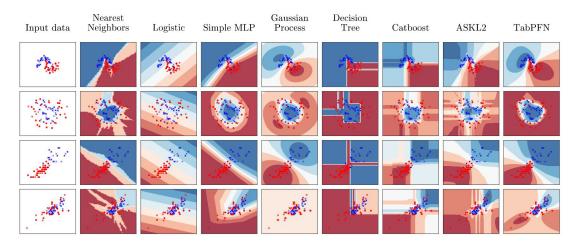


Image source: [Hollmann et al. 2023]

Questions?

AutoML in the Wild

>> Anything to consider?

One

examples

"During the coronavirus crisis, students had to take exams at home. Universities used anti-cheat software to prevent fraud. Among other things, the software had to recognize the student's faces. But it couldn't recognize the student in question, Robin Pocornie. It wasn't until she pointed an extra light at her face that the surveillance software Proctorio finally recognized her. And in the meantime, she had a lot of extra stress to deal with. She feels discriminated against. "

many

 \rightarrow Could've AutoML helped here?

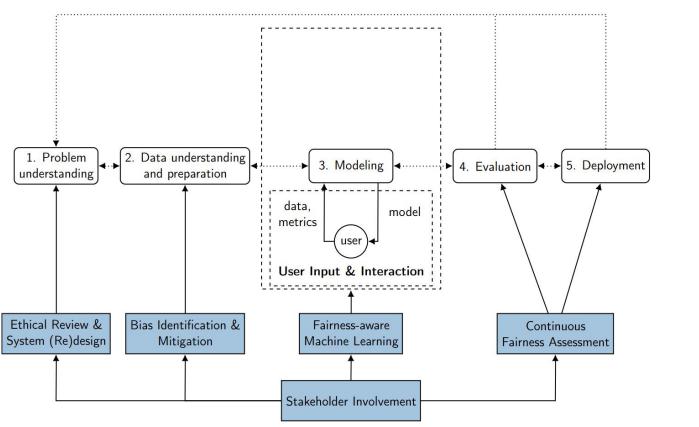
of

 \rightarrow Can we automate fairness?

Photo by cottonbro studio

Based on https://www.automl.org/can-fairness-be-automated/ and [Weerts et al. 2022]

Fairness Considerations in the ML Workflow



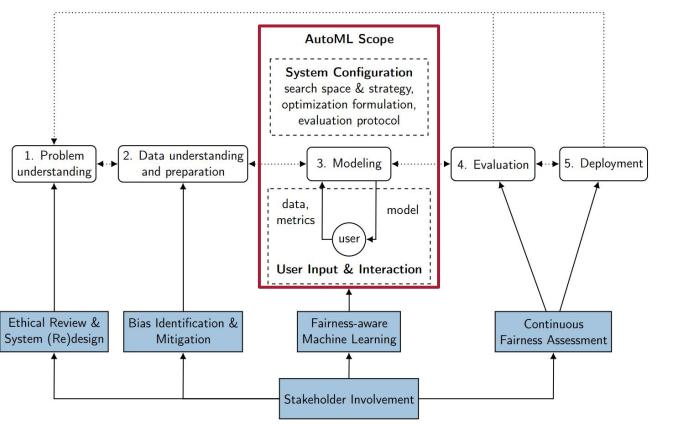
ESSAI SummerSchol 2023

AutoML: Accelerating Research on and Development of AI Applications

32

[Weerts et al. 2022]

Opportunities for fairness-aware AutoML



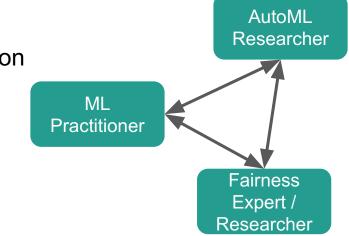
ESSAI SummerSchol 2023

AutoML: Accelerating Research on and Development of Al Applications

[Weerts et al. 2022]

What can we do? Opportunities?

- Codifying best practices
- Better Multi-objective/Constrained optimization
- Better (contextualized) benchmarks
- Better interpretability/explainability
- Better reporting



Technical interventions are **not the sole tool for addressing unfairness!**

 \rightarrow No, we can <u>not</u> automate fairness!

\rightarrow But AutoML can allow the user to spend more time on aspects where a human in the loop is essential

Green AutoML [Tornede et al. 2023]

Energy-efficient AutoML

Data compression, Zero-cost AutoML, multi-fidelity, intelligent stopping, ...

AutoML for Sustainability

Plastic Litter Detection, Green Assisted Driving, Predictive Maintenance, ...

Searching for Energy-Efficient Models

Model size constraint, Energy-aware objective functions, Energy efficient architectures, Model compression, ...

Create Attention

Tracking emissions, awareness among students, researchers, industry partners, ... Green AutoML

ESSAI SummerSchol 2023

╋

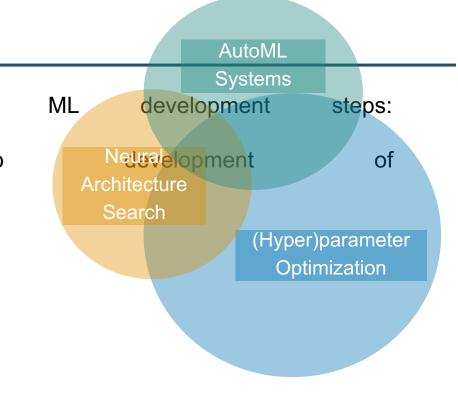
Kahoot Quiz I

Conclusion

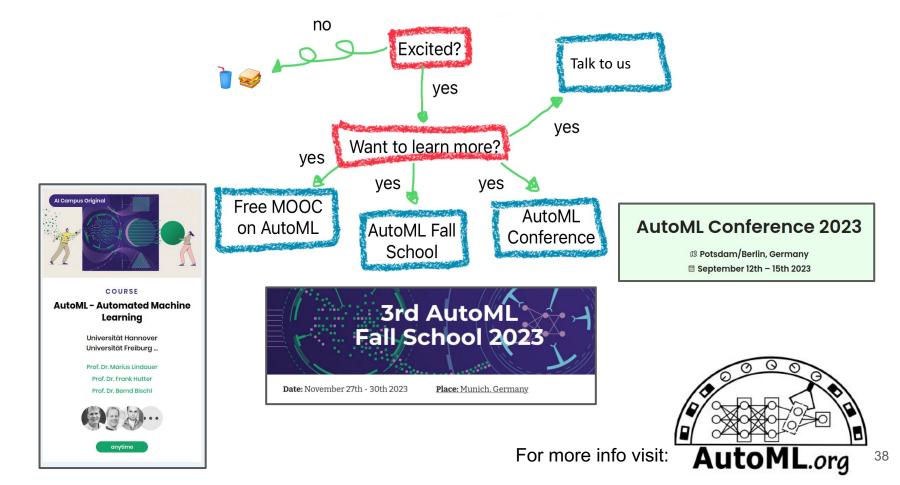
- AutoML helps for many HPO, NAS, AutoML systems
- AutoML speeds up ML applications

Future

- Human-centered and trustworthy AutoML
- Foundation Models X AutoML
- Better Tooling



Advertisement !!!?!



Your feedback

Thanks. Have a nice weekend!

ESSAI SummerSchol 2023

AutoML: Accelerating Research on and Development of Al Applications

