

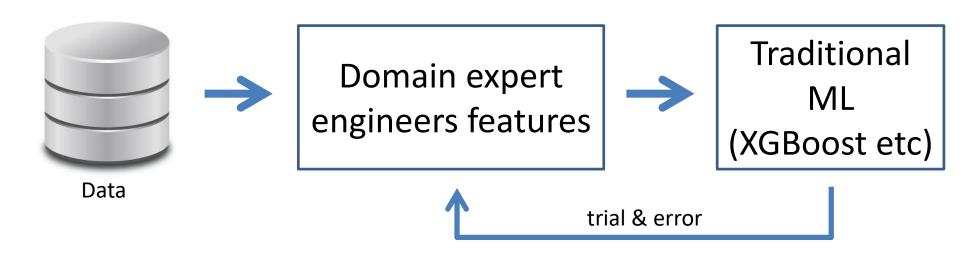
Extending the Versatile Workhorse of Blackbox Neural Architecture Search

Frank Hutter

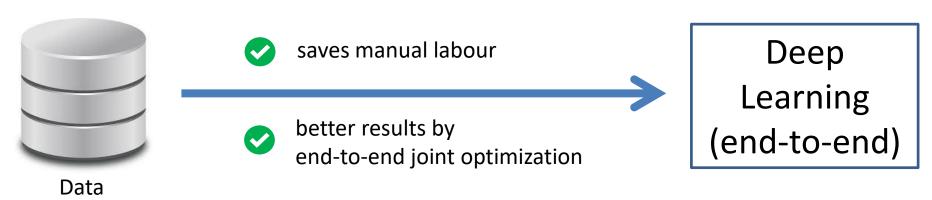
University of Freiburg fh@cs.uni-freiburg.de

Big Picture Motivation: Why Deep Learning Succeeded

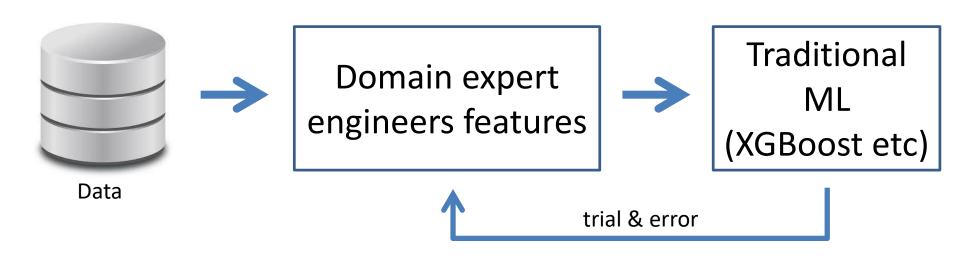
Traditional ML practice before Deep Learning



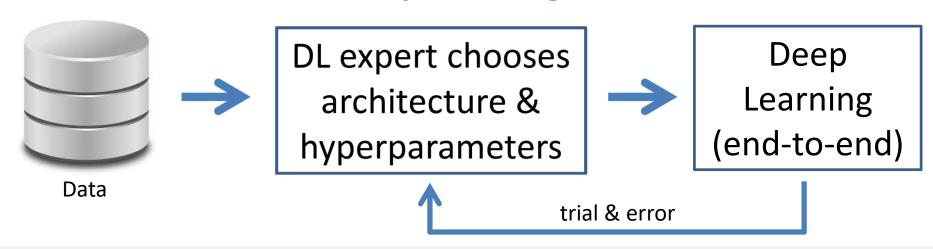
Deep Learning



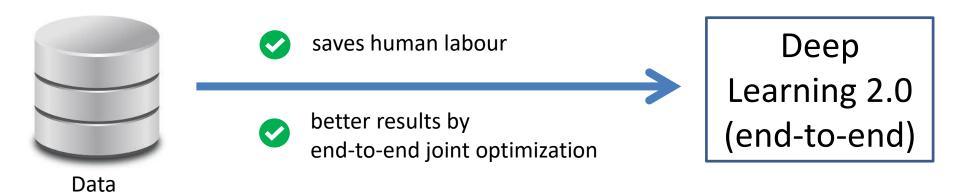
Traditional ML practice before Deep Learning



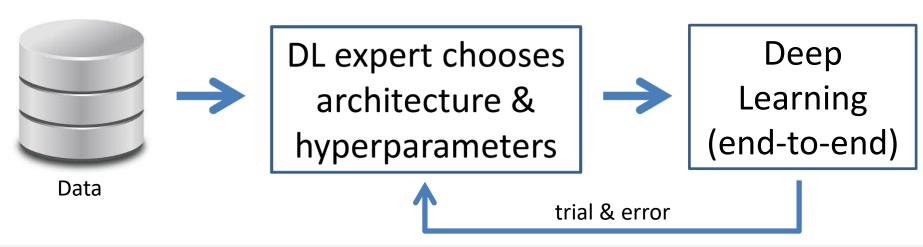
Deep Learning

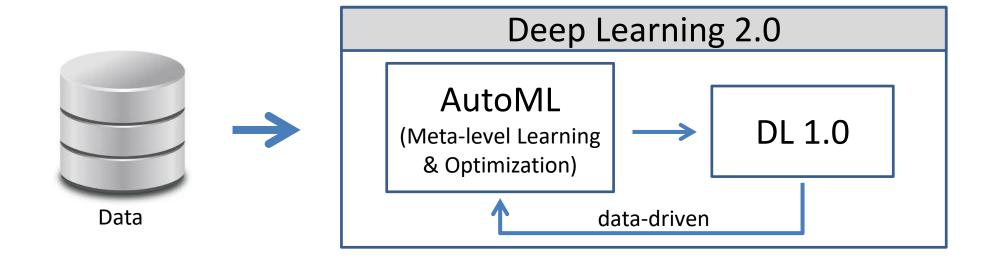


Deep Learning 2.0



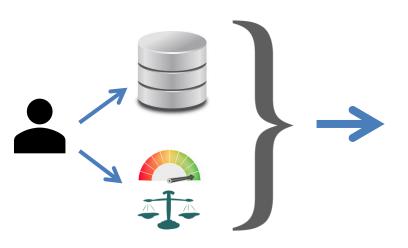
Deep Learning 1.0

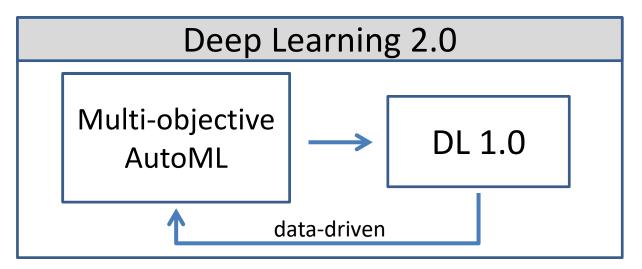




- fairness
- **x** robustness
- model calibration

- interpretability
- latency of predictions
- size(memory) of the model

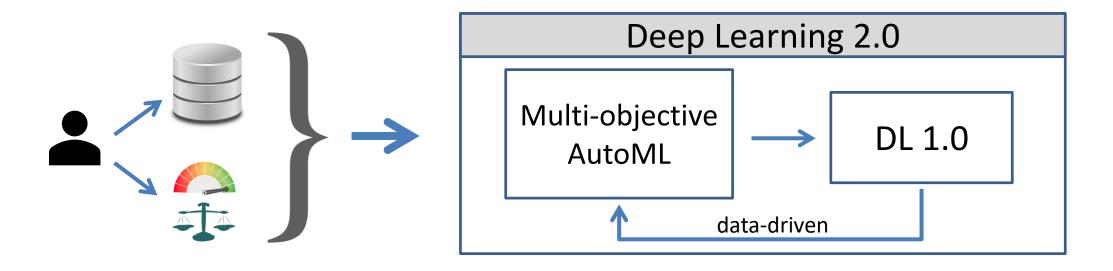




- domain expert can specify objectives
- fairness
- robustness
- model calibration

- interpretability
- latency of predictions
- size(memory) of the model

Expected Impact of Deep Learning 2.0

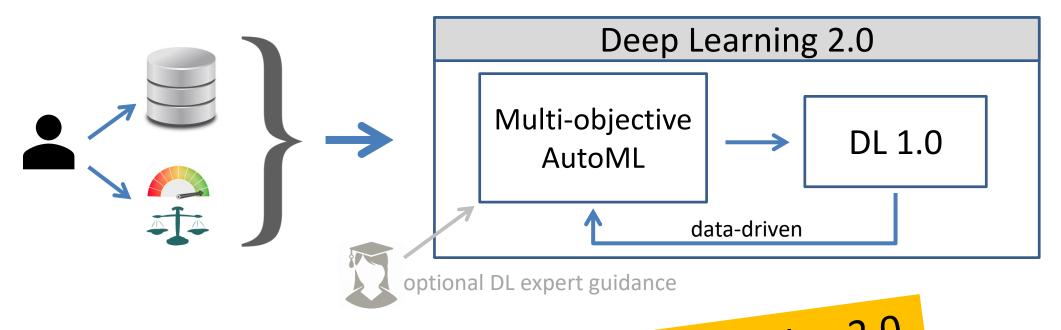


- Paradigm-changing: democratizing Deep Learning
 - DL 2.0 projects possible without a DL expert
 - DL 2.0 directly optimizes for user's objectives

→ Trustworthy AI by design

DL 2.0 will be even more pervasive than DL 1.0, with huge impact on the billion-dollar DL market

Integrating Human Expert Knowledge



- DL 2.0 proje NAS is very core to Deep Learning 2.0
 DL 2.0 directly optimizes for Paradigm-changing: de

 - - → Trustworthy AI by design

DL 2.0 will be even more pervasive than DL 1.0, with huge impact on the billion-dollar DL market

A Critical Look at the Field of NAS (by someone invested in the field)

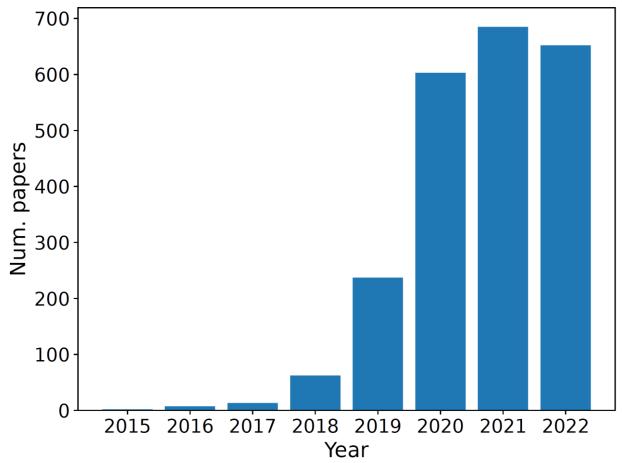
Over 2000 NAS papers in the last 4 years

- see NAS literature list by Deng & Lindauer
 https://www.automl.org/automl/
 literature-on-neural-architecture-search/
- see the survey by White et al, 2023

• **BUT**:

- Transformers, ViT and ConvNext were discovered manually, not by NAS
- Not a focus of the NAS community to create robust & efficient AutoML systems

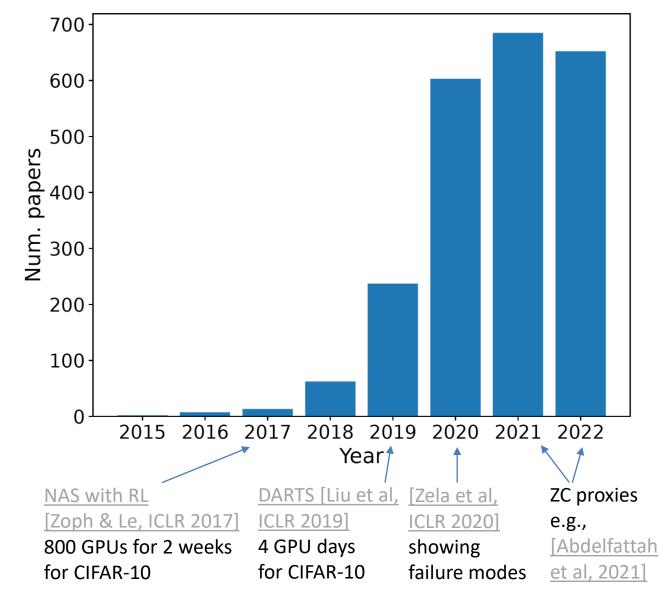
#new NAS papers per year (including arXiv, etc)



A Critical Look at the Field of NAS (by someone invested in the field)

- Early blackbox methods were extremely expensive
- DARTS is fast but has catastrophic failure modes
 - E.g., all skip connections
- ZC proxies very popular but not a silver bullet: very varied performance across search spaces

#new NAS papers per year (including arXiv, etc)



Three Possible Use Cases of NAS

- Improvements of an existing architecture family
 - Small search spaces, e.g., layer-wise hyperparameters: #kernels, kernel sizes
 - Reduce latency: distillation, pruning, etc
 - Already widely used for hardware-aware NAS

AutoML

Focus of this talk

- Given a new dataset, robustly & efficiently make predictions
- Not a focus of the NAS community (but of the lightweight NAS competition)

- Discovering novel architectures
 - Overcome restrictive search spaces to allow the discovery of novel architectures

Outline

- Bayesian optimization and how to speed it up
 - Bayesian optimization
 - Multi-fidelity optimization
 - Meta-learning

- Extensions of blackbox NAS
 - Transfer-NAS [Shala et al, ICML 2023 top 5%]
 - Hierarchical spaces [Schrodi et al, NeurIPS 2022 WS on meta-learning]
 - Include hyperparameters: JAHS [Bansal, NeurIPS 2022 D&B oral]
 - Multi-objective JAHS for fair face recognition [Dooley et al, NeurIPS 2022 WS on meta-learning]

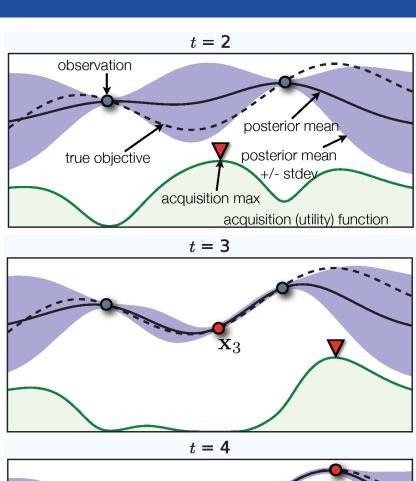
Bayesian Optimization in a Nutshell

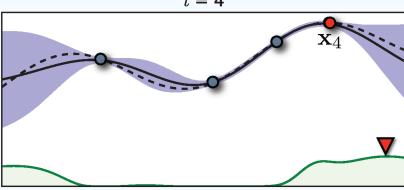
 Prominent approach to optimize expensive blackbox functions [Mockus et al., '78]

$$\max_{x \in X} f(x) \qquad x \to f(x)$$

- Efficient in the number of function evaluations
- Still works when objective is nonconvex, noisy, has unknown derivatives, etc
- Recent convergence results

[Srinivas et al, '10; Bull '11; de Freitas, Smola, Zoghi, '12]





An Important Component of Bayes Opt: the Surrogate Model

- The Standard Model: a Gaussian process
 - + strong calibration
 - + mathematical convenience
 - +/- depends crucially on the used kernel

Bayesian neural networks

- + flexibility
- not good for few data points (unless in-context learned, see [Müller et al, ICML 2023])

Random forests

- + flexibility
- + strong off-the-shelf usability

Outline

- Bayesian optimization and how to speed it up
 - Bayesian optimization
 - → Multi-fidelity optimization
 - Meta-learning

- Extensions of blackbox NAS
 - Transfer-NAS [Shala et al, ICML 2023 top 5%]
 - Hierarchical spaces [Schrodi et al, NeurIPS 2022 WS on meta-learning]
 - Include hyperparameters: JAHS [Bansal, NeurIPS 2022 D&B oral]
 - Multi-objective JAHS for fair face recognition [Dooley et al, NeurIPS 2022 WS on meta-learning]

Multi-Fidelity Optimization

Key Idea: use cheap approximations of expensive blackbox

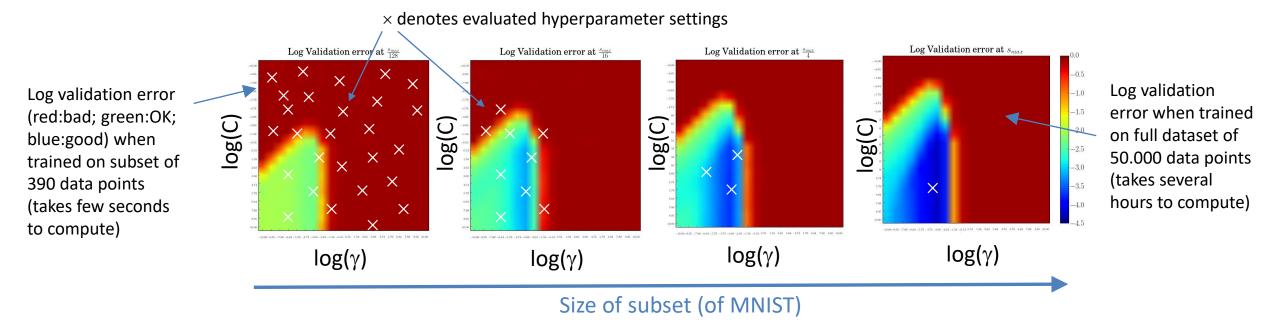
- Cheap approximations exist in many applications
 - Fewer epochs of iterative training algorithms (e.g., SGD)
 - Subset of data
 - Downsampled images in object recognition
 - Shallower/slimmer neural networks
 - Shorter MCMC chains in Bayesian deep learning
 - Fewer trials in deep reinforcement learning

— ...

16

Example for Multi-Fidelity Optimization

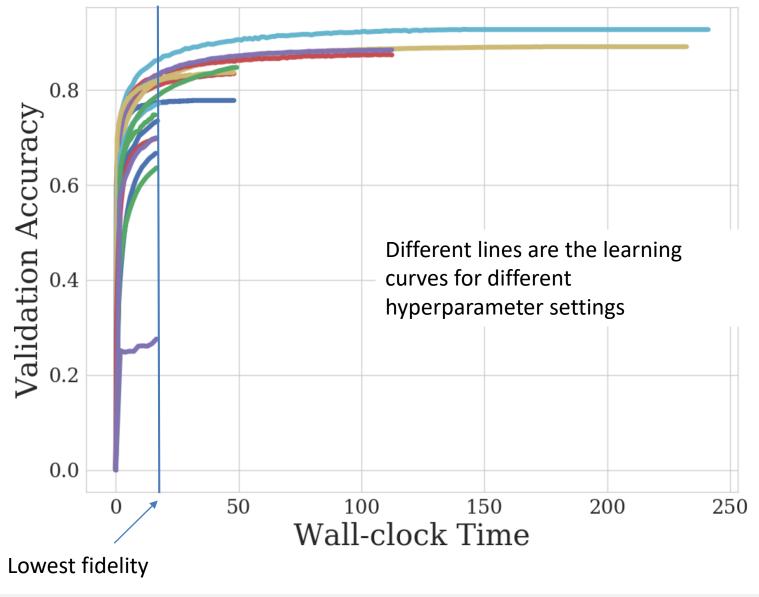
- One possible approximation: use a subset of the data
 - Many cheap evaluations on small subsets
 - Few expensive evaluations on the full data
- E.g.: Support Vector Machine (SVM) on MNIST dataset (hyperparameters: C, γ)



→ up to 1000x speedups over blackbox optimization on full data [Klein et al, AISTATS 2017]

Successive Halving (SH) Algorithm When the Fidelity is Runtime

[Jamieson & Talwalkar, AISTATS 2016]

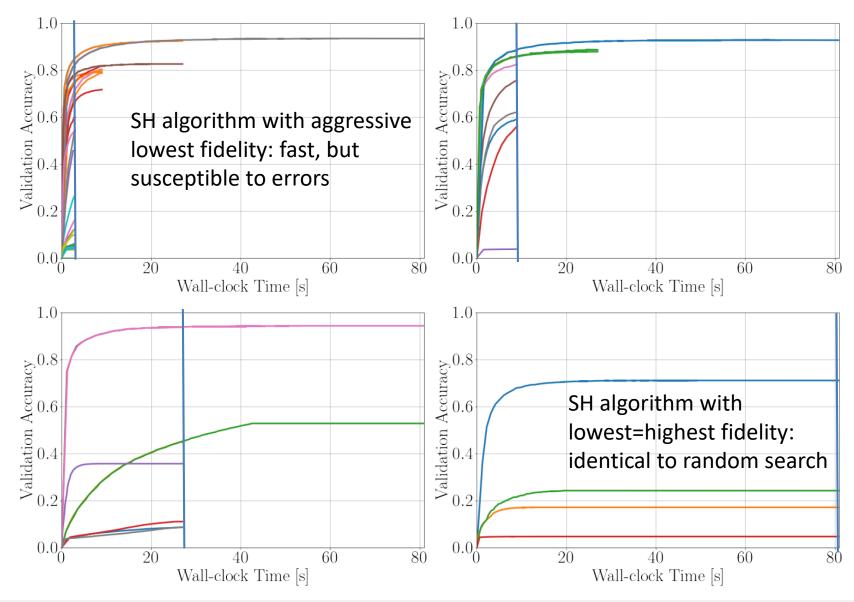


An Extension of SH with Theoretical Guarantees: Hyperband

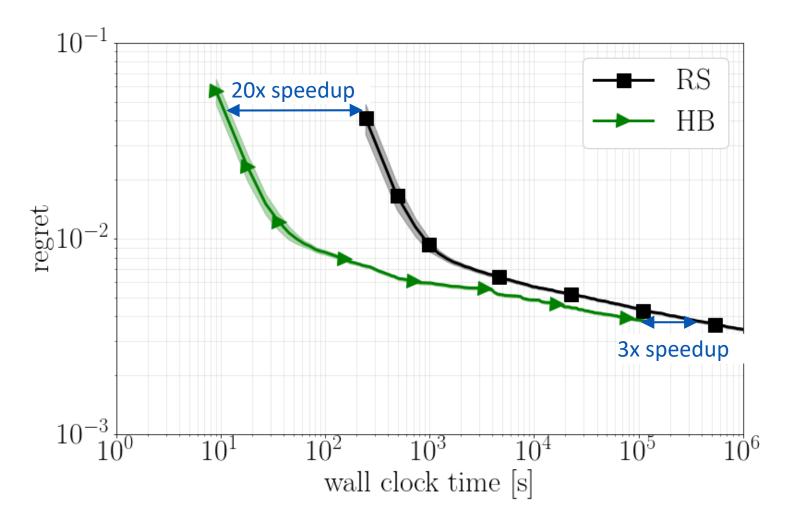
[Li et al, ICLR 2017]

Main idea:
 hedge against
 errors in cheap
 approximations

Algorithm:
 run multiple
 copies of SH
 in parallel,
 starting at
 different
 cheapest
 fidelities



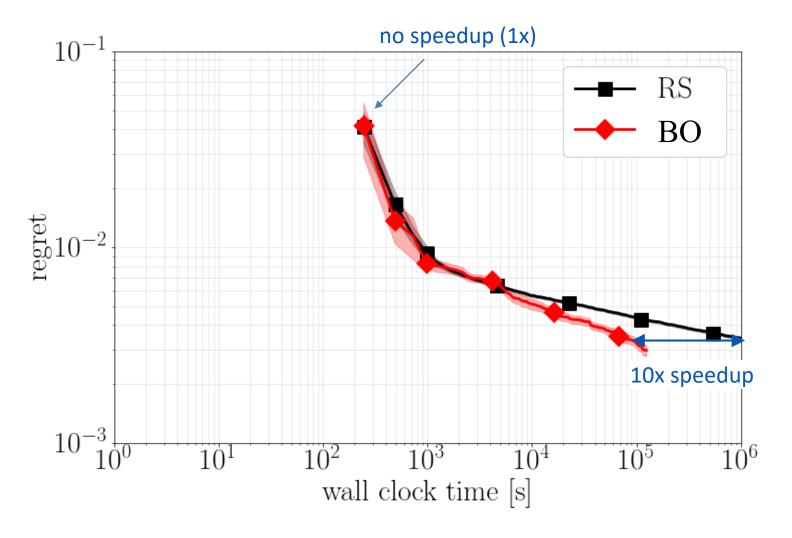
Hyperband vs. Random Search



Biggest advantage: much improved anytime performance

Auto-Net on dataset adult

Bayesian Optimization vs Random Search

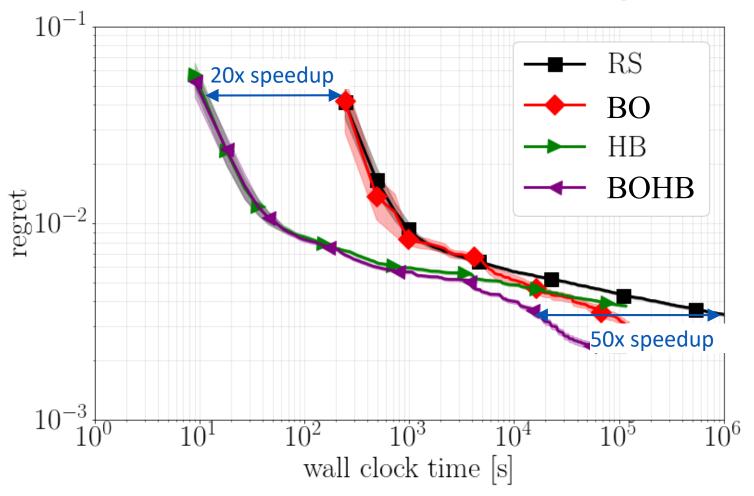


Biggest advantage: much improved final performance

Auto-Net on dataset adult

BOHB: Combining Bayesian Optimization & Hyperband

[Falkner, Klein & Hutter, ICML 2018]



Best of both worlds: strong anytime and final performance

Auto-Net on dataset adult

Outline

- Bayesian optimization and how to speed it up
 - Bayesian optimization
 - Multi-fidelity optimization
 - Meta-learning
- Extensions of blackbox NAS
 - Transfer-NAS [Shala et al, ICML 2023 top 5%]
 - Hierarchical spaces [Schrodi et al, NeurIPS 2022 WS on meta-learning]
 - Include hyperparameters: JAHS [Bansal, NeurIPS 2022 D&B oral]
 - Multi-objective JAHS for fair face recognition [Dooley et al, NeurIPS 2022 WS on meta-learning]

Meta-learning Across Datasets

There are many different ways to meta-learn across datasets

- Relevant here
 - Pre-train Bayesian optimization's surrogate model across datasets

Outline

- Bayesian optimization and how to speed it up
 - Bayesian optimization
 - Multi-fidelity optimization
 - Meta-learning

- Extensions of blackbox NAS
 - Transfer-NAS [Shala et al, ICML 2023 top 5%]
 - Hierarchical spaces [Schrodi et al, NeurIPS 2022 WS on meta-learning]
 - Include hyperparameters: JAHS [Bansal, NeurIPS 2022 D&B oral]
 - Multi-objective JAHS for fair face recognition [Dooley et al, NeurIPS 2022 WS on meta-learning]

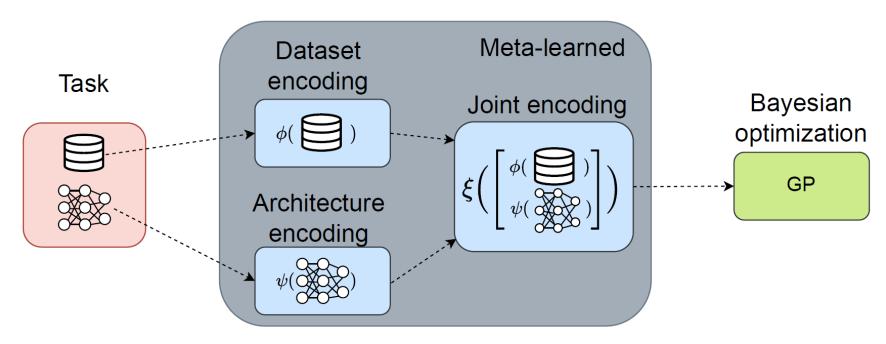
Surrogate Model Used: GPs with Deep Kernels

- Combine the benefits of Gaussian processes (GPs) and neural networks (NNs)
 - GPs:
 - Calibrated uncertainty quantification
 - Strong performance with few samples
 - NNs
 - Flexibility to learn meaningful features
 - Scalability
- High-level overview
 - Use neural networks to learn embeddings for inputs
 - Use Gaussian processes with a kernel function on top of the embeddings

Transfer NAS with Meta-learned Bayesian Surrogates

Surrogate model

- Learn a dataset embedding $\,\phi:\mathcal{D} o\mathbb{R}^L$ (with a transformer)
- Learn an architecture embedding $\psi:\chi o\mathbb{R}^K$ (with a graph neural network)
- Fit a kernel $\ \xi: \mathbb{R}^{K+L} o \mathbb{R}^M$ on the concatenation of these embeddings
- Meta-learn these embeddings across datasets and architectures



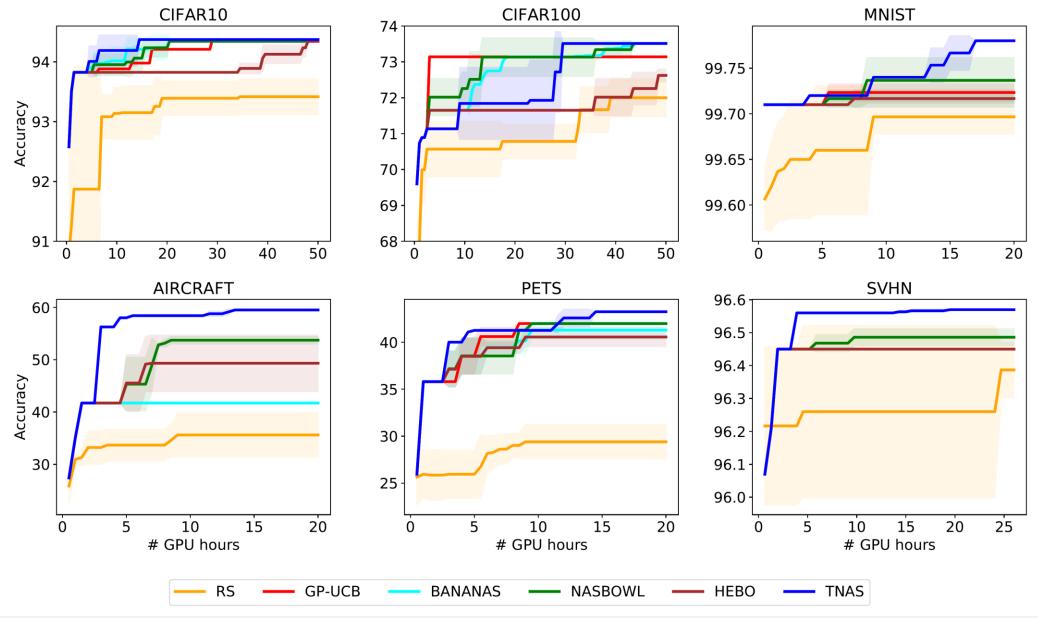
The Rest of the Pipeline

- Experimental setup taken from RapidNAS [Lee et al, ICLR 2021]
 - Meta-train data: 4230 subtasks of downsampled ImageNet with 20 classes each
 - Test data: MNIST, SVHN, CIFAR-10, CIFAR-100, Aircraft, and Oxford-IIIT Pets

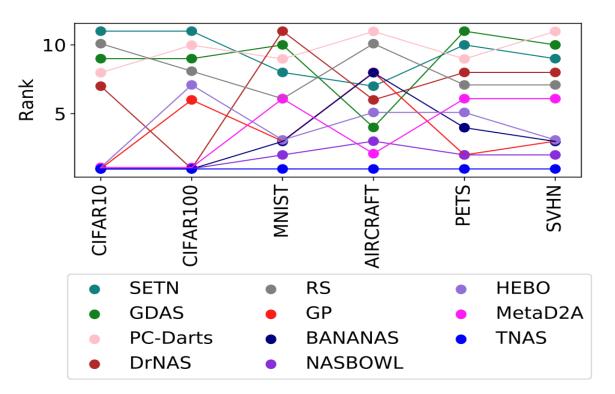
- Search space
 - NB201 (open question: performance with general search spaces)

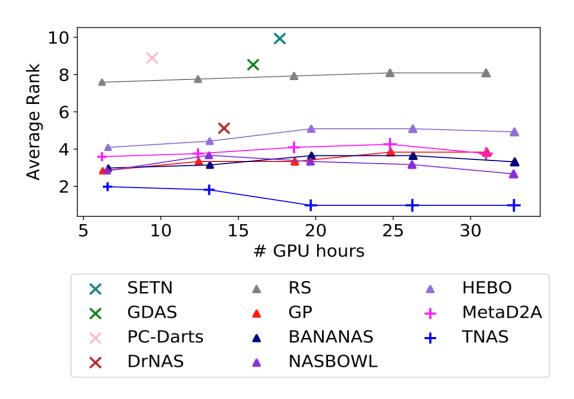
- Standard Bayesian optimization, for up to 30 evaluations
 - With deep GPs based on the meta-learned combined kernel
 - Fine-tune the embeddings after each function evaluation

Results Over Time



Results: Robustness & Efficiency





- Transfer-NAS yields the best results on six different image classification tasks
- It is also the most robust approach, even for very short runtimes
 - In particular, it performs favourably against one-shot methods

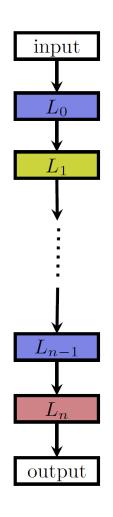
Outline

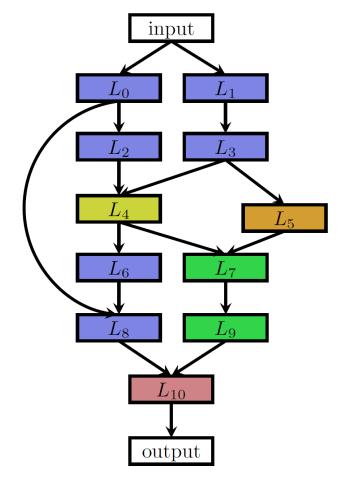
- Bayesian optimization and how to speed it up
 - Bayesian optimization
 - Multi-fidelity optimization
 - Meta-learning

- Extensions of blackbox NAS
 - Transfer-NAS [Shala et al, ICML 2023 top 5%]
 - Hierarchical spaces [Schrodi et al, NeurIPS 2022 WS on meta-learning]
 - Include hyperparameters: JAHS [Bansal, NeurIPS 2022 D&B oral]
 - Multi-objective JAHS for fair face recognition [Dooley et al, NeurIPS 2022 WS on meta-learning]

Basic Neural Architecture Search Spaces

[Elsken et al., JMLR 2019]





Chain-structured space (different colours: different layer types)

More complex space with multiple branches and skip connections

Cell Search Spaces

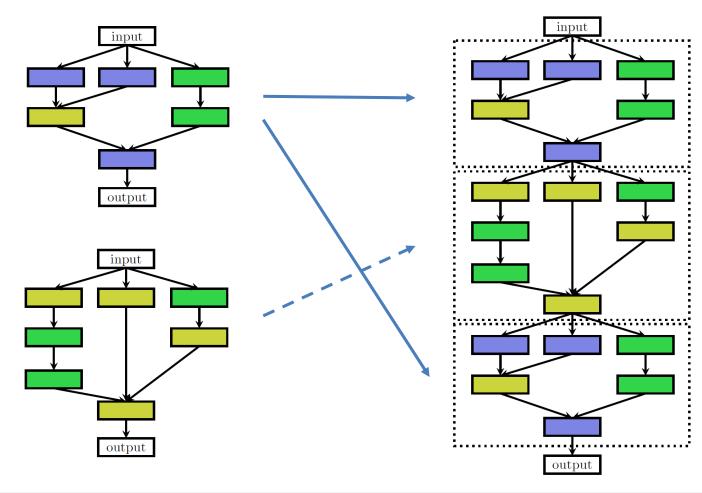
Introduced by Zoph et al. [CVPR 2018]

Two possible cells

Architecture composed of stacking together individual cells

normal cell: preserves spatial resolution

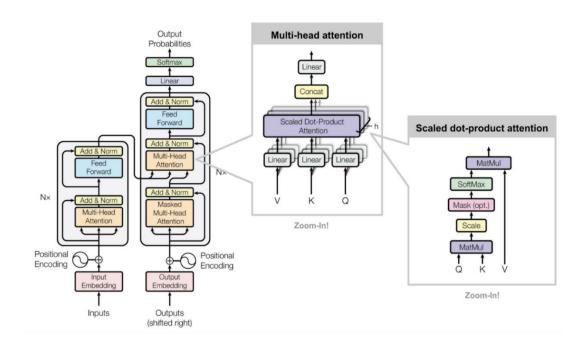
reduction cell: reduces spatial resolution



Hierarchical Cell Spaces

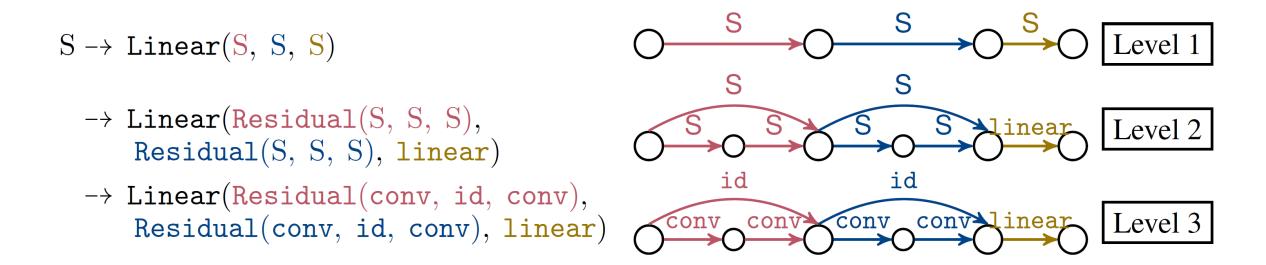
- Reuse of substructures, like in cell search spaces
- But choices on many different levels
- Some examples in the literature (e.g., [Liu et al, ICLR 2018]), but understudied

 Potential example for an element of a hierarchical space: transformers



Formulation of Search Spaces by Context-free Grammars

- Choices on multiple levels of the architecture
- Can be described by context-free grammars
- At each level, we apply another production rule to add more detail



Example Grammar: Hierarchical Extension of NB201

```
D2 ::= Sequential3(D1, D1, D0) \mid Sequential3(D0, D1, D1) \mid Sequential4(D1, D1, D0, D0)
D1 ::= Sequential3(C, C, D) \mid Sequential4(C, C, C, D) \mid Residual3(C, C, D, D)
D0 ::= Sequential3(C, C, CL) \mid Sequential4(C, C, C, CL) \mid Residual3(C, C, CL, CL)
D ::= Sequential2(CL, down) \mid Sequential3(CL, CL, down) \mid Residual2(CL, down, down)
 C ::= Sequential2(CL, CL) \mid Sequential3(CL, CL, CL) \mid Residual2(CL, CL, CL)
                    CL ::= Cell(OP, OP, OP, OP, OP, OP)
                    OP ::= zero | id | CONVBLOCK | avg_pool
       CONVBLOCK ::= Sequential3(ACT, CONV, NORM)
                  ACT ::= relu | hardswish | mish
                CONV ::= conv1x1 | conv3x3 | dconv3x3
                                                                       Blue: additional
                                                                       macro-level choices
               NORM ::= batch | instance | layer
                                                                       Red: original NB201
                                                                       Brown: additional
                   Size of combined search space: \approx 10^{446} architectures
                                                                       low-level choices
```

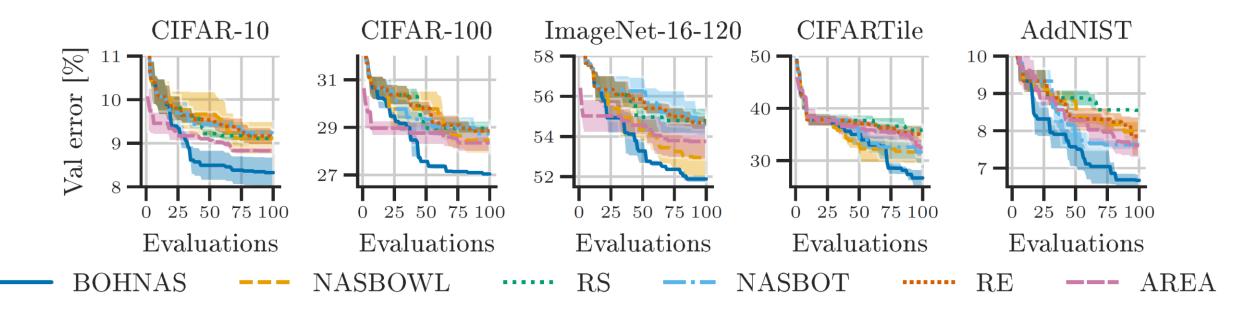

Search Strategy

- Bayesian optimization with a special kernel
- Hierarchical Weisfeiler-Lehman kernel (hWL)
 - WL kernel as in NAS-BOWL [Ru et al, ICLR 2021]
 - Apply WL kernel for each level of abstraction:

```
F_3(\omega)= Sequential(Residual(conv, id, conv), Residual(conv, id, conv), linear), F_2(\omega)= Sequential(Residual, Residual, linear), F_1(\omega)= Sequential.
```

- Fostering regularity through substitution
 - Reusing partial architectures at multiple places in the architecture
 - The reused architecture can itself contain a reused part

Result 1: The Search Strategy is Much More Efficient



Our approach: BOHNAS

Result 2: The Found Results are Competitive

Dataset	C10	C100	IM16-120	CTile	AddNIST	C10	C10	IM
Training prot.	NB201 [†]	Act. func.	DARTS	DARTS (transfer)				
Previous best	5.63	26.51	53.15	35.75	7.4	8.32	2.65*	24.63*
BOHNAS	5.02	25.41	48.16	30.33	4.57	8.31	2.68	24.48
Difference	+0.51	+1.1	+4.99	+5.42	+2.83	+0.01	-0.03	+0.15

[†] includes hierarchical search space variants. * reproduced results using the reported genotype.

- Often better performance than any previous method
 - Also better performance than the best architecture in the NB201 space
 - With 100 function evaluations
- Activation function search: 1000 function evaluations;
 better than ReLU (8.93) and Swish (8.61) based on Swish search space

Outline

- Bayesian optimization and how to speed it up
 - Bayesian optimization
 - Multi-fidelity optimization
 - Meta-learning

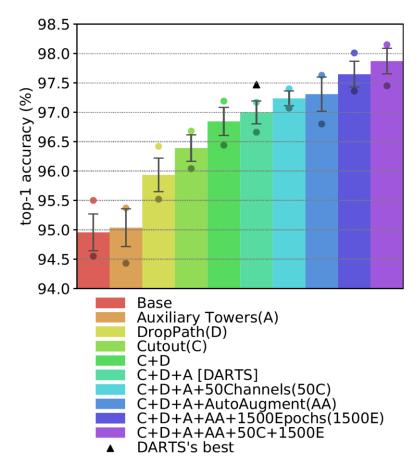
- Extensions of blackbox NAS
 - Transfer-NAS [Shala et al, ICML 2023 top 5%]
 - Hierarchical spaces [Schrodi et al, NeurIPS 2022 WS on meta-learning]
 - Include hyperparameters: JAHS [Bansal, NeurIPS 2022 D&B oral]
 - Multi-objective JAHS for fair face recognition [Dooley et al, NeurIPS 2022 WS on meta-learning]

Hyperparameters are Important

Hyperparameters can be more important than architectures

• E.g., [Yang et al, ICLR 2020: "NAS Evaluation is Frustratingly Hard"]

• There are interaction effects between architectures and hyperparameters



JAHS-Bench-201: a Large Scale Benchmark for Joint NAS+HPO

[Bansal et al, NeurlPS Datasets & Benchmarks Track 2022, oral]

- Joint Architecture and Hyperparameter Search (JAHS)
- JAHS-Bench-201 extends the prominent NAS-Bench-201 with
 - 4 different hyperparameters
 - 4 different fidelities
- Evaluations on 3 data sets
- 140 million performance data points
- The largest database of neural network performance to date

Space	Property	Description	# Values
Architecture	Cell Space	NAS-Bench-201	15,625
Hyperparameter	Activation Learning Rate Weight Decay Trivial Augment	ReLU/Hardswish/Mish $[10^{-3}, 10^{0}]$ $[10^{-5}, 10^{-2}]$ On/Off	Continuous Continuous 2
Fidelity	N W R Epoch	Depth Multiplier Width Multiplier Resolution Multiplier # Training epochs	3 3 3 200

Adding Hyperparameters into NAS

- Impossible for some NAS approaches
 - One-shot NAS
 - ZC proxies
- Trivial for blackbox NAS
 - Simply extend the search space by the hyperparameters
 - Bayesian optimization then over a joint space of architectures and hyperparameters

Outline

- Bayesian optimization and how to speed it up
 - Bayesian optimization
 - Multi-fidelity optimization
 - Meta-learning

- Extensions of blackbox NAS
 - Transfer-NAS [Shala et al, ICML 2023 top 5%]
 - Hierarchical spaces [Schrodi et al, NeurIPS 2022 WS on meta-learning]
 - Include hyperparameters: JAHS [Bansal, NeurIPS 2022 D&B oral]
 - Multi-objective JAHS for fair face recognition [Dooley et al, NeurIPS 2022 WS on meta-learning]

Can DL 2.0 Help with Fairness? A Case Study in Face Recognition

Lighter Male

100.0%

100.0%

99.7%

99.5%

100.0%

Lighter Female

92.9%

93.6%

97.6%

99.0%

99.7%

Largest Gap

31.4%

22.5%

16.7%

3.6%

1.5%

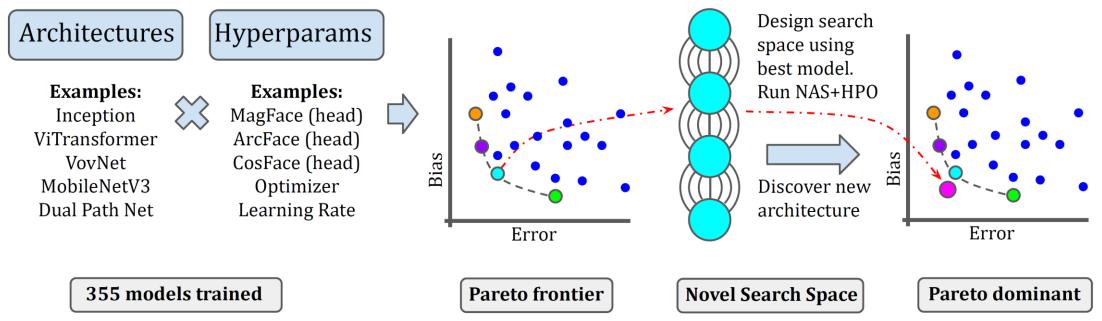
- Facial recognition (FR) systems are known to exhibit bias
 - sociodemographic dimensions, like gender and race

98.7% 68.6% 100% 92.9% Darker Male Darker Female 98.7% 68.6% Amazon 98.7% 77.5% Kairos amazon **IBM** 99.4% 83.0% Face++ 98.7% 95.9% Microsoft 99.7% 98.5%

- LIGHTER DARKER LIGHTER DARKER **MALES FEMALES MALES FEMALES**
- Face recognition is used by law enforcement agencies for sensitive applications
 - Identifying suspects; tracking down missing persons; biometric security
- How can we improve this?
 - Pre-processing, training, and post-processing methods have failed to close the gap
 - Can Deep Learning 2.0 help?

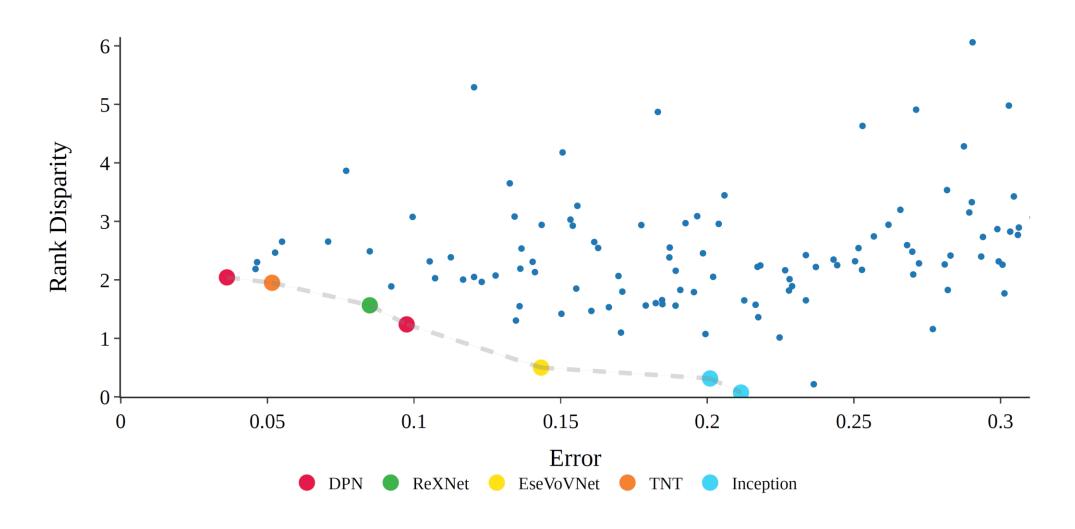
Deep Learning 2.0 to Find Better & Fairer Models

- Dataset: CelebA face recognition
- Protected attribute: Gender
- Fairness metric: difference in quality of classification ("Rank disparity")



Result: fairer and more accurate than traditional fairness mitigation algorithms

Phase 1: Assessment of Fairness & Error of Many Models



Phase 2: Multi-objective Optimization for Fairness & Error

- Architecture space:
 - DPN block of dual path networks
- Hyperparameter space:
 - Optimizer
 - Learning rate
 - Type of head/loss
- Search method used:
 - Bayesian optimization package SMAC3 [Lindauer et al, JMLR 2022]
 - Natively supports multi-fidelity, multiobjective optimization

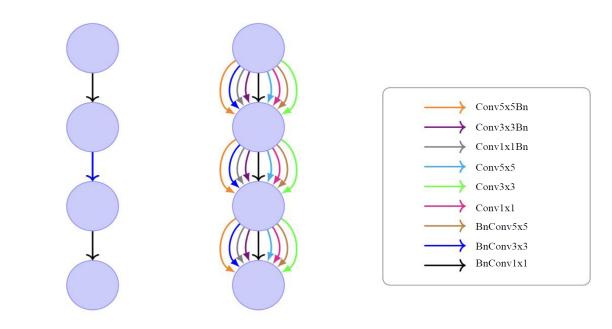
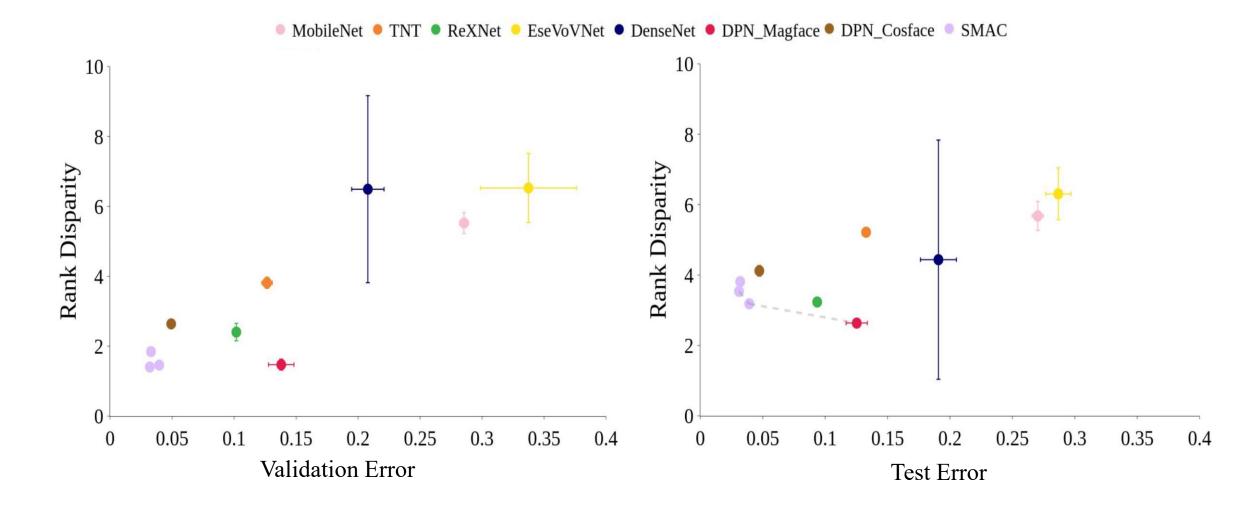


Figure 4: DPN block (left) vs. our searchable block (right).

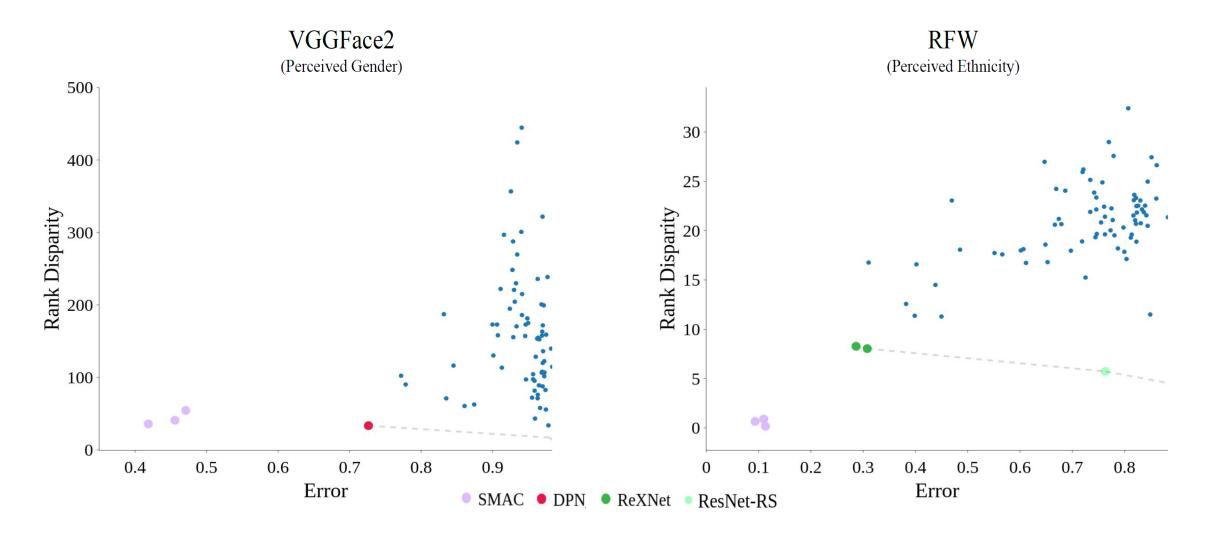
Table 1: Searchable hyperparameter choices.

Hyperparameter	Choices
Architecture Head/Loss	MagFace, ArcFace, CosFace
Optimizer Type	Adam, AdamW, SGD
Learning rate (conditional)	Adam/AdamW \rightarrow [1e - 4, 1e - 2], SGD \rightarrow [0.09, 0.8]

Phase 2: Multi-objective Optimization for Fairness & Error



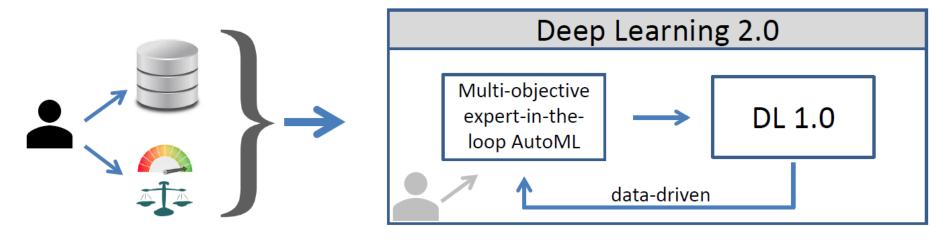
Generalization to Other Fairness Tasks



Our found architecture & hyperparameters appear to still be strong w.r.t. other metrics

Take-aways

Deep Learning 2.0: expert-guided Auto-DL for the objectives at hand



Blackbox NAS to power DL 2.0

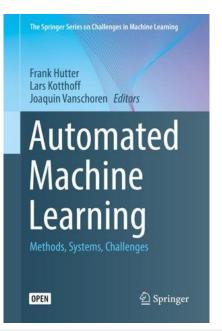
- Its speed can rival one-shot methods
- Flexibility
 - Hierarchical search spaces
 - JAHS: including hyperparameters
- Fair face recognition by JAHS

all our code is open-source:

github.com/automl

get involved:
AutoML conference series

<u>automl.cc</u>



Thank you for your attention!

Funding sources

My fantastic team

